import os import clip import torch from torchvision.datasets import CIFAR100 import gradio as gr # Load the model device = "cpu" model, preprocess = clip.load('ViT-B/32', device) # Download the dataset cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False) def classify(img, user_text): image = preprocess(img).unsqueeze(0).to(device) user_texts = user_text.split(",") text_sources = cifar100.classes + user_texts text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in text_sources]).to(device) # Calculate features with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text_inputs) # Pick the top 5 most similar labels for the image image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1) values, indices = similarity[0].topk(5) result = {} for value, index in zip(values, indices): result[text_sources[index]] = value.item() return result inputs = [ gr.inputs.Image(type='pil', label="Original Image"), gr.inputs.Textbox(lines=1) ] outputs = gr.outputs.Label(type="confidences",num_top_classes=5) title = "CLIP" description = "CLIP demo" gr.Interface(classify, inputs, outputs, title=title, description=description).launch(debug=True)