import hashlib
import os
import urllib
import warnings
from typing import Any, Union, List

import torch
from PIL import Image
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
from tqdm import tqdm

from .model import build_model
from .simple_tokenizer import SimpleTokenizer as _Tokenizer

try:
    from torchvision.transforms import InterpolationMode
    BICUBIC = InterpolationMode.BICUBIC
except ImportError:
    BICUBIC = Image.BICUBIC


if torch.__version__.split(".") < ["1", "7", "1"]:
    warnings.warn("PyTorch version 1.7.1 or higher is recommended")


__all__ = ["available_models", "load", "tokenize"]
_tokenizer = _Tokenizer()

_MODELS = {
    "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
    "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
    "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
    "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
    "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
    "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
}


def _download(url: str, root: str):
    os.makedirs(root, exist_ok=True)
    filename = os.path.basename(url)

    expected_sha256 = url.split("/")[-2]
    download_target = os.path.join(root, filename)

    if os.path.exists(download_target) and not os.path.isfile(download_target):
        raise RuntimeError(f"{download_target} exists and is not a regular file")

    if os.path.isfile(download_target):
        if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
            return download_target
        else:
            warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")

    with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
        with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
            while True:
                buffer = source.read(8192)
                if not buffer:
                    break

                output.write(buffer)
                loop.update(len(buffer))

    if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
        raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")

    return download_target


def _transform(n_px):
    return Compose([
        Resize(n_px, interpolation=BICUBIC),
        CenterCrop(n_px),
        lambda image: image.convert("RGB"),
        ToTensor(),
        Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
    ])


def available_models() -> List[str]:
    """Returns the names of available CLIP models"""
    return list(_MODELS.keys())


def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
    """Load a CLIP model

    Parameters
    ----------
    name : str
        A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict

    device : Union[str, torch.device]
        The device to put the loaded model

    jit : bool
        Whether to load the optimized JIT model or more hackable non-JIT model (default).

    download_root: str
        path to download the model files; by default, it uses "~/.cache/clip"

    Returns
    -------
    model : torch.nn.Module
        The CLIP model

    preprocess : Callable[[PIL.Image], torch.Tensor]
        A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
    """
    if name in _MODELS:
        model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
    elif os.path.isfile(name):
        model_path = name
    else:
        raise RuntimeError(f"Model {name} not found; available models = {available_models()}")

    try:
        # loading JIT archive
        model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
        state_dict = None
    except RuntimeError:
        # loading saved state dict
        if jit:
            warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
            jit = False
        state_dict = torch.load(model_path, map_location="cpu")

    if not jit:
        model = build_model(state_dict or model.state_dict()).to(device)
        if str(device) == "cpu":
            model.float()
        return model, _transform(model.visual.input_resolution)

    # patch the device names
    device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
    device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]

    def patch_device(module):
        try:
            graphs = [module.graph] if hasattr(module, "graph") else []
        except RuntimeError:
            graphs = []

        if hasattr(module, "forward1"):
            graphs.append(module.forward1.graph)

        for graph in graphs:
            for node in graph.findAllNodes("prim::Constant"):
                if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
                    node.copyAttributes(device_node)

    model.apply(patch_device)
    patch_device(model.encode_image)
    patch_device(model.encode_text)

    # patch dtype to float32 on CPU
    if str(device) == "cpu":
        float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
        float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
        float_node = float_input.node()

        def patch_float(module):
            try:
                graphs = [module.graph] if hasattr(module, "graph") else []
            except RuntimeError:
                graphs = []

            if hasattr(module, "forward1"):
                graphs.append(module.forward1.graph)

            for graph in graphs:
                for node in graph.findAllNodes("aten::to"):
                    inputs = list(node.inputs())
                    for i in [1, 2]:  # dtype can be the second or third argument to aten::to()
                        if inputs[i].node()["value"] == 5:
                            inputs[i].node().copyAttributes(float_node)

        model.apply(patch_float)
        patch_float(model.encode_image)
        patch_float(model.encode_text)

        model.float()

    return model, _transform(model.input_resolution.item())


def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor:
    """
    Returns the tokenized representation of given input string(s)

    Parameters
    ----------
    texts : Union[str, List[str]]
        An input string or a list of input strings to tokenize

    context_length : int
        The context length to use; all CLIP models use 77 as the context length

    truncate: bool
        Whether to truncate the text in case its encoding is longer than the context length

    Returns
    -------
    A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
    """
    if isinstance(texts, str):
        texts = [texts]

    sot_token = _tokenizer.encoder["<|startoftext|>"]
    eot_token = _tokenizer.encoder["<|endoftext|>"]
    all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
    result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)

    for i, tokens in enumerate(all_tokens):
        if len(tokens) > context_length:
            if truncate:
                tokens = tokens[:context_length]
                tokens[-1] = eot_token
            else:
                raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
        result[i, :len(tokens)] = torch.tensor(tokens)

    return result