/** * @file rcsignal.c * @brief RC PWM/SBUS signal reading implementation with runtime mode selection */ #include "rcsignal.h" #include "config.h" #include "driver/gpio.h" #include "driver/uart.h" #include "esp_timer.h" #include "esp_log.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include static const char *TAG = "RCSIGNAL"; // SBUS protocol constants #define SBUS_FRAME_SIZE 25 #define SBUS_HEADER 0x0F #define SBUS_FOOTER 0x00 #define SBUS_FOOTER2 0x04 // Alternative footer #define SBUS_BAUDRATE 100000 #define SBUS_CH_MIN 172 #define SBUS_CH_CENTER 992 #define SBUS_CH_MAX 1811 #define UART_NUM UART_NUM_1 #define UART_BUF_SIZE 256 // PWM mode constants #define PULSE_THRESHOLD_US 1500 #define SIGNAL_TIMEOUT_MS 100 static struct { int8_t gpio_pin; bool use_sbus_mode; // Runtime mode selection uint8_t sbus_trigger_channel; // SBUS trigger channel uint16_t sbus_threshold_low; // SBUS low threshold uint16_t sbus_threshold_high; // SBUS high threshold // SBUS state volatile uint16_t channels[SBUS_NUM_CHANNELS]; volatile int64_t last_frame_time; uint8_t rx_buffer[SBUS_FRAME_SIZE]; // PWM state volatile uint32_t pulse_width_us; volatile int64_t last_edge_time; volatile int64_t pulse_start_time; volatile bool last_level; // Common state volatile bool signal_active; volatile bool pull_detected; uint8_t current_mode; rcsignal_mode_change_callback_t callback; bool initialized; TaskHandle_t monitor_task; } rcsignal = { .gpio_pin = -1, .use_sbus_mode = false, .sbus_trigger_channel = 3, .sbus_threshold_low = 800, .sbus_threshold_high = 1100, .channels = {0}, .last_frame_time = 0, .rx_buffer = {0}, .pulse_width_us = 0, .last_edge_time = 0, .pulse_start_time = 0, .last_level = false, .signal_active = false, .pull_detected = false, .current_mode = 0, .callback = NULL, .initialized = false, .monitor_task = NULL, }; // PWM Mode: GPIO ISR handler static void IRAM_ATTR gpio_isr_handler(void *arg) { int64_t now = esp_timer_get_time(); bool level = gpio_get_level(rcsignal.gpio_pin); if (level && !rcsignal.last_level) { // Rising edge - start of pulse rcsignal.pulse_start_time = now; } else if (!level && rcsignal.last_level) { // Falling edge - end of pulse if (rcsignal.pulse_start_time > 0) { rcsignal.pulse_width_us = (uint32_t)(now - rcsignal.pulse_start_time); rcsignal.last_edge_time = now; rcsignal.signal_active = true; } } rcsignal.last_level = level; } // SBUS Mode: Parse SBUS frame static bool parse_sbus_frame(const uint8_t *frame, uint16_t *channels) { // Check header and footer if (frame[0] != SBUS_HEADER || (frame[24] != SBUS_FOOTER && frame[24] != SBUS_FOOTER2)) { return false; } // SBUS uses 11 bits per channel, packed into bytes channels[0] = ((frame[1] | frame[2] << 8) & 0x07FF); channels[1] = ((frame[2] >> 3 | frame[3] << 5) & 0x07FF); channels[2] = ((frame[3] >> 6 | frame[4] << 2 | frame[5] << 10) & 0x07FF); channels[3] = ((frame[5] >> 1 | frame[6] << 7) & 0x07FF); channels[4] = ((frame[6] >> 4 | frame[7] << 4) & 0x07FF); channels[5] = ((frame[7] >> 7 | frame[8] << 1 | frame[9] << 9) & 0x07FF); channels[6] = ((frame[9] >> 2 | frame[10] << 6) & 0x07FF); channels[7] = ((frame[10] >> 5 | frame[11] << 3) & 0x07FF); channels[8] = ((frame[12] | frame[13] << 8) & 0x07FF); channels[9] = ((frame[13] >> 3 | frame[14] << 5) & 0x07FF); channels[10] = ((frame[14] >> 6 | frame[15] << 2 | frame[16] << 10) & 0x07FF); channels[11] = ((frame[16] >> 1 | frame[17] << 7) & 0x07FF); channels[12] = ((frame[17] >> 4 | frame[18] << 4) & 0x07FF); channels[13] = ((frame[18] >> 7 | frame[19] << 1 | frame[20] << 9) & 0x07FF); channels[14] = ((frame[20] >> 2 | frame[21] << 6) & 0x07FF); channels[15] = ((frame[21] >> 5 | frame[22] << 3) & 0x07FF); return true; } static void monitor_task(void *arg) { if (rcsignal.use_sbus_mode) { // SBUS mode while (1) { // Read SBUS data from UART int len = uart_read_bytes(UART_NUM, rcsignal.rx_buffer, SBUS_FRAME_SIZE, pdMS_TO_TICKS(20)); if (len == SBUS_FRAME_SIZE) { uint16_t temp_channels[SBUS_NUM_CHANNELS]; if (parse_sbus_frame(rcsignal.rx_buffer, temp_channels)) { // Copy parsed channels for (int i = 0; i < SBUS_NUM_CHANNELS; i++) { rcsignal.channels[i] = temp_channels[i]; } rcsignal.last_frame_time = esp_timer_get_time(); rcsignal.signal_active = true; // Check trigger channel for mode change uint16_t ch_value = rcsignal.channels[rcsignal.sbus_trigger_channel]; // Detect pull low if (ch_value < rcsignal.sbus_threshold_low) { rcsignal.pull_detected = true; } // Detect rising edge (pull high after low) if (ch_value > rcsignal.sbus_threshold_high && rcsignal.pull_detected) { rcsignal.pull_detected = false; if (rcsignal.callback) { rcsignal.callback(); } } } } // Check for signal timeout int64_t now = esp_timer_get_time(); if (rcsignal.signal_active && (now - rcsignal.last_frame_time) > (SIGNAL_TIMEOUT_MS * 1000)) { rcsignal.signal_active = false; memset((void *)rcsignal.channels, 0, sizeof(rcsignal.channels)); } vTaskDelay(pdMS_TO_TICKS(5)); } } else { // PWM mode uint32_t last_pulse_width = 0; while (1) { vTaskDelay(pdMS_TO_TICKS(10)); // Check for signal timeout int64_t now = esp_timer_get_time(); if (rcsignal.signal_active && (now - rcsignal.last_edge_time) > (SIGNAL_TIMEOUT_MS * 1000)) { rcsignal.signal_active = false; rcsignal.pulse_width_us = 0; } // Detect mode change (rising edge on PWM signal > 1500us) if (rcsignal.pulse_width_us != last_pulse_width) { last_pulse_width = rcsignal.pulse_width_us; if (rcsignal.pulse_width_us < PULSE_THRESHOLD_US) { rcsignal.pull_detected = true; } if (rcsignal.pulse_width_us > PULSE_THRESHOLD_US && rcsignal.pull_detected) { // Mode change detected rcsignal.pull_detected = false; if (rcsignal.callback) { rcsignal.callback(); } } } } } } esp_err_t rcsignal_init(const config_t *config) { if (!config || config->rc_signal_pin < 0) { ESP_LOGI(TAG, "RC signal disabled (no pin configured)"); return ESP_OK; } // Store configuration rcsignal.gpio_pin = config->rc_signal_pin; rcsignal.use_sbus_mode = config->use_sbus_mode; rcsignal.sbus_trigger_channel = config->sbus_trigger_channel; rcsignal.sbus_threshold_low = config->sbus_threshold_low; rcsignal.sbus_threshold_high = config->sbus_threshold_high; if (rcsignal.use_sbus_mode) { // SBUS Mode: Configure UART with inverted RX ESP_LOGI(TAG, "Initializing SBUS mode on GPIO%d", rcsignal.gpio_pin); ESP_LOGI(TAG, " Trigger channel: CH%d", rcsignal.sbus_trigger_channel + 1); ESP_LOGI(TAG, " Thresholds: %d / %d", rcsignal.sbus_threshold_low, rcsignal.sbus_threshold_high); uart_config_t uart_config = { .baud_rate = SBUS_BAUDRATE, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_EVEN, .stop_bits = UART_STOP_BITS_2, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .source_clk = UART_SCLK_APB, }; ESP_ERROR_CHECK(uart_param_config(UART_NUM, &uart_config)); ESP_ERROR_CHECK(uart_set_pin(UART_NUM, UART_PIN_NO_CHANGE, rcsignal.gpio_pin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE)); ESP_ERROR_CHECK(uart_driver_install(UART_NUM, UART_BUF_SIZE * 2, 0, 0, NULL, 0)); // Set inverted RX for FrSky receivers (they output inverted SBUS) ESP_ERROR_CHECK(uart_set_line_inverse(UART_NUM, UART_SIGNAL_RXD_INV)); ESP_LOGI(TAG, "SBUS UART configured with inverted RX"); } else { // PWM Mode: Configure GPIO with interrupts ESP_LOGI(TAG, "Initializing PWM mode on GPIO%d", rcsignal.gpio_pin); gpio_config_t io_conf = { .pin_bit_mask = (1ULL << rcsignal.gpio_pin), .mode = GPIO_MODE_INPUT, .pull_up_en = GPIO_PULLUP_ENABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE, .intr_type = GPIO_INTR_ANYEDGE, }; ESP_ERROR_CHECK(gpio_config(&io_conf)); // Add ISR handler (ISR service must be installed by caller) ESP_ERROR_CHECK(gpio_isr_handler_add(rcsignal.gpio_pin, gpio_isr_handler, NULL)); } // Create monitor task BaseType_t ret = xTaskCreate(monitor_task, "rcsignal_monitor", 2048, NULL, 5, &rcsignal.monitor_task); if (ret != pdPASS) { if (rcsignal.use_sbus_mode) { uart_driver_delete(UART_NUM); } else { gpio_isr_handler_remove(rcsignal.gpio_pin); } return ESP_FAIL; } rcsignal.initialized = true; ESP_LOGI(TAG, "RC signal initialized successfully"); return ESP_OK; } void rcsignal_deinit(void) { if (!rcsignal.initialized) return; if (rcsignal.monitor_task) { vTaskDelete(rcsignal.monitor_task); rcsignal.monitor_task = NULL; } if (rcsignal.use_sbus_mode) { uart_driver_delete(UART_NUM); } else { if (rcsignal.gpio_pin >= 0) { gpio_isr_handler_remove(rcsignal.gpio_pin); } } rcsignal.initialized = false; } void rcsignal_register_callback(rcsignal_mode_change_callback_t callback) { rcsignal.callback = callback; } uint32_t rcsignal_get_pulse_width(void) { if (rcsignal.use_sbus_mode) { // In SBUS mode, return trigger channel value mapped to microseconds // SBUS: 172-1811 -> PWM: ~1000-2000us if (rcsignal.signal_active) { uint16_t ch_val = rcsignal.channels[rcsignal.sbus_trigger_channel]; return 1000 + ((ch_val - SBUS_CH_MIN) * 1000) / (SBUS_CH_MAX - SBUS_CH_MIN); } return 0; } else { return rcsignal.pulse_width_us; } } bool rcsignal_is_active(void) { return rcsignal.signal_active; } uint8_t rcsignal_get_current_mode(void) { return rcsignal.current_mode; } uint16_t rcsignal_get_sbus_channel(uint8_t channel) { if (!rcsignal.use_sbus_mode || channel >= SBUS_NUM_CHANNELS) { return 0; } return rcsignal.channels[channel]; } void rcsignal_debug_print_channels(void) { if (!rcsignal.use_sbus_mode) { ESP_LOGW(TAG, "Not in SBUS mode"); return; } if (!rcsignal.signal_active) { ESP_LOGW(TAG, "No SBUS signal active"); return; } ESP_LOGI(TAG, "SBUS Channels:"); ESP_LOGI(TAG, " CH1: %4d CH2: %4d CH3: %4d CH4: %4d", rcsignal.channels[0], rcsignal.channels[1], rcsignal.channels[2], rcsignal.channels[3]); ESP_LOGI(TAG, " CH5: %4d CH6: %4d CH7: %4d CH8: %4d", rcsignal.channels[4], rcsignal.channels[5], rcsignal.channels[6], rcsignal.channels[7]); ESP_LOGI(TAG, " CH9: %4d CH10: %4d CH11: %4d CH12: %4d", rcsignal.channels[8], rcsignal.channels[9], rcsignal.channels[10], rcsignal.channels[11]); ESP_LOGI(TAG, " CH13: %4d CH14: %4d CH15: %4d CH16: %4d", rcsignal.channels[12], rcsignal.channels[13], rcsignal.channels[14], rcsignal.channels[15]); // Highlight the trigger channel ESP_LOGI(TAG, "Trigger channel (CH%d): %d", rcsignal.sbus_trigger_channel + 1, rcsignal.channels[rcsignal.sbus_trigger_channel]); }