55 Commits

Author SHA256 Message Date
b6150ad452 formatting 2025-11-01 17:46:33 +01:00
d992218a7d fix search algo 2025-11-01 17:43:25 +01:00
55b62d7438 update readme 2025-11-01 17:00:00 +01:00
aeb9e04413 update control entry 2025-11-01 16:59:52 +01:00
dddf2c9bf0 Merge pull request 'Disable heating in summer' (#22) from feature/summer-mode into main
Reviewed-on: #22
2025-10-24 17:38:20 +02:00
33c7bc4007 use damped value as event source 2025-10-24 17:23:47 +02:00
524d94c515 Export current entry temperatures as metrics 2025-10-24 16:19:49 +02:00
e8c62a1bd7 slow down damping 2025-10-24 15:35:23 +02:00
5b987bfd5b improve damping 2025-10-24 11:14:10 +02:00
b3a571da3f damping instead of 24h average 2025-10-18 20:39:36 +02:00
9ff3b38f70 disable avg24h 2025-10-18 19:26:14 +02:00
067dc84afa average value for last 24h 2025-10-12 13:10:26 +02:00
9974e2d738 detect summer mode based on two thresholds 2025-10-12 12:59:33 +02:00
6eca00200e suppress heating in summer 2025-07-12 12:04:08 +02:00
ac15376f6b spelling fixes 2025-04-25 21:52:31 +02:00
dcace073d9 rework circulation pump 2025-04-25 21:45:59 +02:00
da7a1be183 Merge pull request 'fix/burner-fault-detection' (#23) from fix/burner-fault-detection into feature/summer-mode
Reviewed-on: #23
2025-04-25 20:45:51 +02:00
2477ccb42a increase threshold 2025-04-19 08:48:57 +02:00
f66b831666 rework burner fault detection 2025-04-19 08:36:19 +02:00
66b7f8320e increase burner fault threshold 2025-04-18 17:50:20 +02:00
416cda0f50 disable log of event 2025-03-01 15:43:29 +01:00
8ca3d97165 refactoring 2025-03-01 15:36:05 +01:00
c9b7313608 refactor 2025-03-01 15:24:48 +01:00
fa958dd53b add outdoor threshold 2025-03-01 15:17:22 +01:00
3771a83fcc change onewire addr to new outdoor sensor 2025-03-01 14:27:12 +01:00
a72c0673b1 Improve efficiency (#21)
- Change to new One Wire Sensors that are no fakes
- Increase chamber temperature

Reviewed-on: #21
Co-authored-by: localhorst <localhorst@mosad.xyz>
Co-committed-by: localhorst <localhorst@mosad.xyz>
2025-02-08 20:05:14 +01:00
999af9d888 Merge pull request 'bugfix/linear-regression-prediction' (#19) from bugfix/linear-regression-prediction into main
Reviewed-on: #19
2024-12-26 22:47:35 +01:00
8a8bcd078b disable log 2024-12-26 22:47:12 +01:00
59b8c3e2b2 revert lab setup 2024-12-26 22:46:30 +01:00
06c6612ef6 fix algo 2024-12-26 22:40:20 +01:00
e790660c36 Merge branch 'main' into testing/lab-temperature-sensor 2024-12-26 22:19:41 +01:00
3c972296ce update example metric 2024-12-26 20:47:21 +01:00
8672241151 Merge pull request 'detect burner fault' (#17) from feature/burner-fault-detection into main
Reviewed-on: #17
2024-12-26 20:37:50 +01:00
25b0a11694 fix detection state 2024-12-26 20:37:19 +01:00
effd5c19e9 detect burner fault 2024-12-26 20:27:42 +01:00
b21dc720ed use lab single sensor 2024-12-26 20:00:37 +01:00
4ffa416f6f Merge pull request 'feature/temperature-predict' (#16) from feature/temperature-predict into main
Reviewed-on: #16
2024-12-26 19:12:20 +01:00
5fde319b63 formatting 2024-12-26 19:09:16 +01:00
6b38a73d77 Revert "switch to single sensor config"
This reverts commit 307278e679.
2024-12-26 19:08:50 +01:00
b5229a4082 cleanup average function 2024-12-26 19:00:09 +01:00
856f009e7f add prediction to all temps 2024-12-26 18:54:50 +01:00
1564860213 use linear regression for preduction 2024-12-26 18:49:04 +01:00
29223c0070 increase metrics task stack to support more metrics 2024-12-26 18:12:39 +01:00
655d890a0f chamber temp prediction metrics 2024-12-26 13:07:03 +01:00
59eb361431 get pred10s working 2024-12-26 11:25:50 +01:00
56f1831d8c pred10s 2024-12-26 11:20:07 +01:00
80e48f632f fix mem fault 2024-12-26 11:01:25 +01:00
26d0761aed Merge branch 'testing/lab-temperature-sensor' into feature/temperature-predict 2024-12-26 10:40:47 +01:00
e267e2be58 disable changes 2024-12-26 10:36:42 +01:00
795223ff66 Merge branch 'main' into feature/temperature-predict 2024-12-26 10:14:41 +01:00
5380cc9cca Merge branch 'main' into testing/lab-temperature-sensor 2024-12-25 22:57:09 +01:00
8effd730b9 Merge pull request 'Fix: Mutex in getter of safety state' (#9) from bugfix/get-safety-state-critial-section into main
Reviewed-on: #9
2024-12-25 22:56:04 +01:00
4deed03190 add mutex in getter of safety state 2024-12-25 22:54:57 +01:00
ff16e601fb add prediction for 10s 2024-12-25 22:10:38 +01:00
307278e679 switch to single sensor config 2024-12-25 20:39:49 +01:00
8 changed files with 577 additions and 195 deletions

View File

@ -19,7 +19,11 @@ Sntp <|-- Metrics
class Inputs{
+initInputs()
-initMeasurement()
-updateAverage()
-updatePrediction()
-taskInput()
-linearRegressionPredict()
+getChamberTemperature()
+getOutdoorTemperature()
+getInletFlowTemperature()
@ -38,7 +42,11 @@ Sntp <|-- Metrics
}
class Control{
initControl()
+taskControl()
+getControlCurrentWeekday()
-findControlCurrentTemperatureEntry()
+getControlCurrentTemperatureEntry()
-controlTable
+getControlState()
}
@ -77,31 +85,43 @@ Sntp <|-- Metrics
#### Example
```
burner_fault_pending 1
circulation_pump_enabled 0
burner_enabled 1
circulation_pump_enabled 1
burner_enabled 0
safety_contact_enabled 1
chamber_temperature 21.812500
chamber_temperature_avg10 21.837500
chamber_temperature_avg60 21.825521
inlet_flow_temperature 22.437500
inlet_flow_temperature_avg10 22.437500
inlet_flow_temperature_avg60 22.434896
outdoor_temperature 21.937500
outdoor_temperature_avg10 21.937500
outdoor_temperature_avg60 21.933594
return_flow_temperature 22.375000
return_flow_temperature_avg10 22.375000
return_flow_temperature_avg60 22.375000
chamber_temperature 37.250000
chamber_temperature_avg10 37.237499
chamber_temperature_avg60 37.438541
chamber_temperature_damped 42.185040
chamber_temperature_pred60 36.638443
inlet_flow_temperature 35.625000
inlet_flow_temperature_avg10 35.618752
inlet_flow_temperature_avg60 35.415627
inlet_flow_temperature_damped 39.431259
inlet_flow_temperature_pred60 36.078678
outdoor_temperature 14.687500
outdoor_temperature_avg10 14.662500
outdoor_temperature_avg60 14.646875
outdoor_temperature_damped 9.169084
outdoor_temperature_pred60 14.660233
return_flow_temperature 39.937500
return_flow_temperature_avg10 40.087502
return_flow_temperature_avg60 41.146873
return_flow_temperature_damped 32.385151
return_flow_temperature_pred60 37.311958
chamber_temperature_state 0
outdoor_temperature_state 0
inlet_flow_temperature_state 0
return_flow_temperature_state 0
safety_state 0
control_state 5
control_state 3
control_current_weekday 5
control_current_entry_time 17100
control_current_entry_chamber_temperature 80.000000
control_current_entry_return_flow_temperature 30.000000
sntp_state 0
system_unixtime 1734814285
uptime_seconds 90
wifi_rssi -63
system_unixtime 1762012743
uptime_seconds 465229
wifi_rssi -72
```
#### Status Encoding
@ -131,15 +151,15 @@ wifi_rssi -63
##### Control Loop
- control_state
| Enum eControlState in [control.h](main/control.h) | Value | Description |
|---------------------------------------------------|-------|------------------------------------|
| CONTROL_STARTING | 0 | |
| CONTROL_HEATING | 1 | Burner running |
| CONTROL_OUTDOOR_TOO_WARM | 2 | Heating not needed |
| CONTROL_RETURN_FLOW_TOO_WARM | 3 | Heating not needed |
| CONTROL_BURNER_FAULT | 4 | Burner reported fault |
| CONTROL_FAULT_SAFETY | 5 | Unable to control due safety fault |
| CONTROL_FAULT_SNTP | 6 | Unable to control due SNTP fault |
| Enum eControlState in [control.h](main/control.h) | Value | Description |
|---------------------------------------------------|-------|--------------------------------------------------|
| CONTROL_STARTING | 0 | |
| CONTROL_HEATING | 1 | Burner running |
| CONTROL_OUTDOOR_TOO_WARM | 2 | Heating not needed |
| CONTROL_RETURN_FLOW_TOO_WARM | 3 | Heating not needed |
| CONTROL_FAULT_BURNER | 4 | Burner reported fault after threshold is reached |
| CONTROL_FAULT_SAFETY | 5 | Unable to control due safety fault |
| CONTROL_FAULT_SNTP | 6 | Unable to control due SNTP fault |
##### SNTP Client
- sntp_state

View File

@ -1,45 +1,107 @@
#include "control.h"
#include "esp_log.h"
#include "esp_timer.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_log.h"
#include "control.h"
#include "outputs.h"
#include "inputs.h"
#include "outputs.h"
#include "safety.h"
#include "sntp.h"
#define PERIODIC_INTERVAL 1U // run control loop every 1sec
#define PERIODIC_INTERVAL 1U // Run control loop every 1 second
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0
#define CHAMPER_TEMPERATURE_TARGET 70.0
// Temperature thresholds
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0f
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0f
#define CHAMBER_TEMPERATURE_TARGET 80.0f // Max cutoff temperature
#define CHAMBER_TEMPERATURE_THRESHOLD 45.0f // Min threshold for burner enable
#define SUMMER_MODE_TEMPERATURE_THRESHOLD_HIGH \
20.0f // Summer mode will be activated
#define SUMMER_MODE_TEMPERATURE_THRESHOLD_LOW \
15.0f // Summer mode will be deactivated --> Heating starts
#define CIRCULATION_PUMP_TEMPERATURE_THRESHOLD \
30.0f // Min threshold of chamber for circulation pump enable
#define BURNER_FAULT_DETECTION_THRESHOLD \
(60U * 4U) // Burner fault detection after 4 minutes
static const char *TAG = "smart-oil-heater-control-system-control";
static eControlState sControlState = CONTROL_STARTING;
static sControlDay aControlTable[] = {
{MONDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
{TUESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
{WEDNESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
{THURSDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
{FRIDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{23, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
{SATURDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{23, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
{SUNDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
// Control table for daily schedules
static const sControlDay aControlTable[] = {
{MONDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{TUESDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{WEDNESDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{THURSDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{FRIDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{23, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{SATURDAY,
2U,
{{{6, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{23, 30},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{SUNDAY,
2U,
{{{6, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 30},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
};
static sControlTemperatureEntry currentControlEntry =
aControlTable[0].aTemperatureEntries[0];
// Function prototypes
void taskControl(void *pvParameters);
eControlWeekday getCurrentWeekday(void);
sControlTemperatureEntry getCurrentTemperatureEntry(void);
void findControlCurrentTemperatureEntry(void);
void initControl(void)
{
BaseType_t taskCreated = xTaskCreate(
taskControl, // Function to implement the task
"taskControl", // Task name
4096, // Stack size (in words, not bytes)
NULL, // Parameters to the task function (none in this case)
5, // Task priority (higher number = higher priority)
NULL // Task handle (optional)
);
BaseType_t taskCreated =
xTaskCreate(taskControl, // Function to implement the task
"taskControl", // Task name
8192, // Stack size (in words, not bytes)
NULL, // Parameters to the task function (none in this case)
5, // Task priority (higher number = higher priority)
NULL // Task handle (optional)
);
if (taskCreated == pdPASS)
{
@ -54,158 +116,244 @@ void initControl(void)
void taskControl(void *pvParameters)
{
bool bHeatingInAction = false;
bool bSummerMode = false;
eBurnerState eBurnerState = BURNER_UNKNOWN;
int64_t i64BurnerEnableTimestamp = esp_timer_get_time();
while (1)
{
vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS);
// Check for safety faults
if (getSafetyState() != SAFETY_NO_ERROR)
{
ESP_LOGW(TAG, "Control not possible due to safety fault!");
sControlState = CONTROL_FAULT_SAFETY;
if (bHeatingInAction == true)
if (bHeatingInAction)
{
ESP_LOGI(TAG, "Control not possible due to safety fault: Disable burner");
ESP_LOGW(TAG, "Disabling burner due to safety fault");
bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
continue;
}
// Check for SNTP faults
if (getSntpState() != SYNC_SUCCESSFUL)
{
ESP_LOGW(TAG, "Control not possible due to sntp fault!");
ESP_LOGW(TAG, "Control not possible due to SNTP fault!");
sControlState = CONTROL_FAULT_SNTP;
if (bHeatingInAction == true)
if (bHeatingInAction)
{
ESP_LOGI(TAG, "Control not possible due to sntp fault: Disable burner");
ESP_LOGW(TAG, "Disabling burner due to SNTP fault");
bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
continue;
}
sControlTemperatureEntry currentControlEntry = getCurrentTemperatureEntry();
// ESP_LOGI(TAG, "Control Entry Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", currentControlEntry.timestamp.hour, currentControlEntry.timestamp.minute, currentControlEntry.fChamberTemperature, currentControlEntry.fReturnFlowTemperature);
findControlCurrentTemperatureEntry();
sControlTemperatureEntry currentControlEntry =
getControlCurrentTemperatureEntry();
if (bHeatingInAction == true)
if (getOutdoorTemperature().fDampedValue >=
SUMMER_MODE_TEMPERATURE_THRESHOLD_HIGH)
{
if (getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature)
{
ESP_LOGI(TAG, "Chamber Target Temperature reached: Disable burner");
bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
else
{
if (bHeatingInAction)
{
// TODO: Check burner fault signal here
}
}
bSummerMode = true;
}
else if (getOutdoorTemperature().fDampedValue <=
SUMMER_MODE_TEMPERATURE_THRESHOLD_LOW)
{
bSummerMode = false;
}
if (bHeatingInAction == false)
// Enable burner if outdoor temperature is low and return flow temperature
// is cooled down
if (!bHeatingInAction && (eBurnerState != BURNER_FAULT))
{
if ((getReturnFlowTemperature().average60s.fValue <= currentControlEntry.fReturnFlowTemperature) && (getChamberTemperature().fCurrentValue <= 45.0))
if (bSummerMode)
{
ESP_LOGI(TAG, "Return Flow Target Temperature reached: Enable Burner");
// ESP_LOGI(TAG, "Outdoor temperature too warm: Disabling heating");
setBurnerState(DISABLED);
setSafetyControlState(DISABLED);
sControlState = CONTROL_OUTDOOR_TOO_WARM;
}
else if ((getReturnFlowTemperature().average60s.fValue <=
currentControlEntry.fReturnFlowTemperature) &&
(getChamberTemperature().fCurrentValue <=
CHAMBER_TEMPERATURE_THRESHOLD))
{
ESP_LOGI(TAG,
"Enabling burner: Return flow temperature target reached");
eBurnerState = BURNER_UNKNOWN;
bHeatingInAction = true;
setCirculationPumpState(ENABLED);
setBurnerState(ENABLED);
setSafetyControlState(ENABLED);
i64BurnerEnableTimestamp = esp_timer_get_time();
sControlState = CONTROL_HEATING;
}
else
{
// ESP_LOGI(TAG, "Return flow temperature too warm: Disabling heating");
sControlState = CONTROL_RETURN_FLOW_TOO_WARM;
}
}
}
// Disable burner if target temperature is reached or a fault occurred
if (bHeatingInAction)
{
if ((getChamberTemperature().fCurrentValue >=
currentControlEntry.fChamberTemperature) ||
(getChamberTemperature().predict60s.fValue >=
currentControlEntry.fChamberTemperature))
{
ESP_LOGI(TAG, "Chamber target temperature reached: Disabling burner");
bHeatingInAction = false;
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
else if (esp_timer_get_time() - i64BurnerEnableTimestamp >=
BURNER_FAULT_DETECTION_THRESHOLD * 1000000U)
{
if (eBurnerState == BURNER_UNKNOWN)
{
if (getBurnerError() == FAULT)
{
// ESP_LOGW(TAG, "Burner fault detected: Disabling burner");
bHeatingInAction = false;
eBurnerState = BURNER_FAULT;
sControlState = CONTROL_FAULT_BURNER;
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
else
{
// ESP_LOGI(TAG, "No burner fault detected: Marking burner as
// fired");
eBurnerState = BURNER_FIRED;
}
}
}
}
// Manage circulation pump
if (getChamberTemperature().fCurrentValue <=
CIRCULATION_PUMP_TEMPERATURE_THRESHOLD)
{
// ESP_LOGI(TAG, "Burner cooled down: Disabling circulation pump");
setCirculationPumpState(DISABLED);
}
else
{
// ESP_LOGI(TAG, "Burner heated: Enabling circulation pump");
setCirculationPumpState(ENABLED);
}
} // End of while(1)
}
eControlState getControlState(void)
{
return sControlState;
}
eControlState getControlState(void) { return sControlState; }
eControlWeekday getCurrentWeekday(void)
eControlWeekday getControlCurrentWeekday(void)
{
time_t now;
struct tm *timeinfo;
// Get the current time
time(&now);
timeinfo = localtime(&now); // Convert to local time
timeinfo = localtime(&now);
// Get the day of the week (0 = Sunday, 1 = Monday, ..., 6 = Saturday)
int day = timeinfo->tm_wday;
// Adjust so that Monday = 0, Sunday = 6
if (day == 0)
{
day = 6; // Sunday becomes 6
}
else
{
day -= 1; // Shift other days to make Monday = 0
}
return (eControlWeekday)day;
return (eControlWeekday)((day == 0) ? 6 : day - 1);
}
sControlTemperatureEntry getCurrentTemperatureEntry(void)
/**
* @brief Finds the active temperature control entry for the current time.
*
* Searches through the weekly schedule to find the most recent entry
* that should be active at the current date/time. Falls back to the
* last entry in the week if no suitable entry is found.
*/
/**
* @brief Finds the active temperature control entry for the current time.
*
* Searches through the weekly schedule to find the most recent entry
* that should be active at the current date/time. Falls back to the
* last entry in the week if no suitable entry is found.
*/
void findControlCurrentTemperatureEntry(void)
{
sControlTemperatureEntry result = aControlTable[0].aTemperatureEntries[0];
eControlWeekday currentDay = getCurrentWeekday();
eControlWeekday currentDay = getControlCurrentWeekday();
// Get current time
time_t now;
struct tm timeinfo;
// Get the current time
time(&now);
// Convert to local time structure
localtime_r(&now, &timeinfo);
// Extract hour and minute
int hour = timeinfo.tm_hour; // Hour (0-23)
int minute = timeinfo.tm_min; // Minute (0-59)u
// ESP_LOGI(TAG, "Current Day: %i Hour: %i Minute: %i", currentDay, hour, minute);
int currentHour = timeinfo.tm_hour;
int currentMinute = timeinfo.tm_min;
for (int i = 0; i < sizeof(aControlTable) / sizeof(aControlTable[0]); i++)
// ESP_LOGI(TAG, "Searching for control entry - Day: %d, Time: %02d:%02d", currentDay, currentHour, currentMinute);
// Search through all days and entries
for (int dayIndex = 0; dayIndex < 7; dayIndex++)
{
/// loops through days
// ESP_LOGI(TAG, "Day %d: %d", i + 1, aControlTable[i].day);
// int numberOfEntries = aControlTable[i].entryCount;
// ESP_LOGI(TAG, "Number of entries: %i", numberOfEntries);
const sControlDay *day = &aControlTable[dayIndex];
for (int j = 0; j < aControlTable[i].entryCount; j++)
for (int entryIndex = 0; entryIndex < day->entryCount; entryIndex++)
{
if ((aControlTable[i].day) > currentDay)
{
// ESP_LOGI(TAG, "DAY Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
return result;
}
const sControlTemperatureEntry *entry = &day->aTemperatureEntries[entryIndex];
if ((aControlTable[i].day == currentDay) && (aControlTable[i].aTemperatureEntries[j].timestamp.hour > hour))
{
// ESP_LOGI(TAG, "HOUR Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
return result;
}
// Check if this entry is in the future (next active entry)
bool isFutureDay = (day->day > currentDay);
bool isTodayFutureTime = (day->day == currentDay) &&
((entry->timestamp.hour > currentHour) ||
(entry->timestamp.hour == currentHour &&
entry->timestamp.minute > currentMinute));
if ((aControlTable[i].day == currentDay) && (aControlTable[i].aTemperatureEntries[j].timestamp.hour == hour) && (aControlTable[i].aTemperatureEntries[j].timestamp.minute == minute))
if (isFutureDay || isTodayFutureTime)
{
// ESP_LOGI(TAG, "MINUTE Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
return result;
// Found next scheduled entry, so determine the previous (active) one
if (entryIndex > 0)
{
// Use previous entry from same day
currentControlEntry = day->aTemperatureEntries[entryIndex - 1];
}
else if (dayIndex > 0)
{
// Use last entry from previous day
const sControlDay *previousDay = &aControlTable[dayIndex - 1];
currentControlEntry = previousDay->aTemperatureEntries[previousDay->entryCount - 1];
}
else
{
// First entry of the week - wrap to last entry of Sunday
const sControlDay *sunday = &aControlTable[6];
currentControlEntry = sunday->aTemperatureEntries[sunday->entryCount - 1];
}
/*
ESP_LOGI(TAG, "Active entry found - Time: %02d:%02d, "
"Return Temp: %lf, Chamber Temp: %lf",
currentControlEntry.timestamp.hour,
currentControlEntry.timestamp.minute,
currentControlEntry.fReturnFlowTemperature,
currentControlEntry.fChamberTemperature);
*/
return;
}
// ESP_LOGI(TAG, "SET Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
result = aControlTable[i].aTemperatureEntries[j];
}
}
return result;
}
// If we reached here, current time is after all entries this week
// Use the last entry (Sunday evening)
const sControlDay *sunday = &aControlTable[6];
currentControlEntry = sunday->aTemperatureEntries[sunday->entryCount - 1];
// ESP_LOGI(TAG, "Using last entry of week - Time: %02d:%02d", currentControlEntry.timestamp.hour, currentControlEntry.timestamp.minute);
}
sControlTemperatureEntry getControlCurrentTemperatureEntry(void)
{
return currentControlEntry;
}

View File

@ -9,11 +9,18 @@ typedef enum _ControlState
CONTROL_HEATING,
CONTROL_OUTDOOR_TOO_WARM,
CONTROL_RETURN_FLOW_TOO_WARM,
CONTROL_BURNER_FAULT,
CONTROL_FAULT_BURNER,
CONTROL_FAULT_SAFETY,
CONTROL_FAULT_SNTP,
} eControlState;
typedef enum _BurnerState
{
BURNER_UNKNOWN, // Burner is disabled or state after enabling is still unkown
BURNER_FIRED, // Burner fired successfully
BURNER_FAULT // Burner was unable to fire successfully
} eBurnerState;
typedef enum _ControlWeekday
{
MONDAY,
@ -47,3 +54,5 @@ typedef struct _ControlDay
void initControl(void);
eControlState getControlState(void);
eControlWeekday getControlCurrentWeekday(void);
sControlTemperatureEntry getControlCurrentTemperatureEntry(void);

View File

@ -1,6 +1,8 @@
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include <string.h>
#include <math.h>
#include "esp_log.h"
#include <ds18x20.h>
@ -14,10 +16,10 @@ static const char *TAG = "smart-oil-heater-control-system-inputs";
const uint8_t uBurnerFaultPin = 19U;
const uint8_t uDS18B20Pin = 4U;
const onewire_addr_t uChamperTempSensorAddr = 0x3e0000001754be28;
const onewire_addr_t uOutdoorTempSensorAddr = 0x880000001648e328;
const onewire_addr_t uInletFlowTempSensorAddr = 0xe59cdef51e64ff28;
const onewire_addr_t uReturnFlowTempSensorAddr = 0xa7a8e1531f64ff28;
const onewire_addr_t uChamperTempSensorAddr = 0xd00000108cd01d28;
const onewire_addr_t uOutdoorTempSensorAddr = 0xd70000108a9b9128;
const onewire_addr_t uInletFlowTempSensorAddr = 0x410000108b8c0628;
const onewire_addr_t uReturnFlowTempSensorAddr = 0x90000108cc77c28;
onewire_addr_t uOneWireAddresses[MAX_DN18B20_SENSORS];
float fDS18B20Temps[MAX_DN18B20_SENSORS];
@ -31,7 +33,10 @@ static sMeasurement sInletFlowTemperature;
static sMeasurement sReturnFlowTemperature;
void taskInput(void *pvParameters);
void initMeasurement(sMeasurement *pMeasurement);
void updateAverage(sMeasurement *pMeasurement);
void updatePrediction(sMeasurement *pMeasurement);
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex);
void initInputs(void)
{
@ -53,6 +58,11 @@ void initInputs(void)
}
xSemaphoreGiveRecursive(xMutexAccessInputs);
initMeasurement(&sChamperTemperature);
initMeasurement(&sOutdoorTemperature);
initMeasurement(&sInletFlowTemperature);
initMeasurement(&sReturnFlowTemperature);
BaseType_t taskCreated = xTaskCreate(
taskInput, // Function to implement the task
"taskInput", // Task name
@ -72,50 +82,107 @@ void initInputs(void)
}
}
void updateAverage(sMeasurement *pMeasurement)
{ /* Average form the last 10sec */
pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average10s.bufferIndex = (pMeasurement->average10s.bufferIndex + 1) % AVG10_SAMPLE_SIZE;
void initMeasurement(sMeasurement *pMeasurement)
{
if (!pMeasurement)
return;
if (pMeasurement->average10s.bufferCount < AVG10_SAMPLE_SIZE)
pMeasurement->state = MEASUREMENT_FAULT;
pMeasurement->fCurrentValue = INITIALISATION_VALUE;
pMeasurement->fDampedValue = INITIALISATION_VALUE;
pMeasurement->average10s.fValue = INITIALISATION_VALUE;
pMeasurement->average10s.bufferCount = 0U;
pMeasurement->average10s.bufferIndex = 0U;
memset(pMeasurement->average10s.samples, 0U, AVG10S_SAMPLE_SIZE);
pMeasurement->average60s.fValue = INITIALISATION_VALUE;
pMeasurement->average60s.bufferCount = 0U;
pMeasurement->average60s.bufferIndex = 0U;
memset(pMeasurement->average60s.samples, 0U, AVG60S_SAMPLE_SIZE);
pMeasurement->predict60s.fValue = INITIALISATION_VALUE;
pMeasurement->predict60s.bufferCount = 0U;
pMeasurement->predict60s.bufferIndex = 0U;
memset(pMeasurement->predict60s.samples, 0U, PRED60S_SAMPLE_SIZE);
}
void updateAverage(sMeasurement *pMeasurement)
{
if (!pMeasurement)
return;
// Average form the last 10sec
pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average10s.bufferIndex = (pMeasurement->average10s.bufferIndex + 1) % AVG10S_SAMPLE_SIZE;
if (pMeasurement->average10s.bufferCount < AVG10S_SAMPLE_SIZE)
{
pMeasurement->average10s.bufferCount++;
}
if (pMeasurement->average10s.bufferCount == 0U)
{
pMeasurement->average10s.fValue = pMeasurement->fCurrentValue;
}
float sum = 0.0;
for (int i = 0; i < pMeasurement->average10s.bufferCount; i++)
for (int i = 0; i <= pMeasurement->average10s.bufferCount; i++)
{
sum += pMeasurement->average10s.samples[i];
}
pMeasurement->average10s.fValue = sum / pMeasurement->average10s.bufferCount;
/* Average form the last 60sec */
// Average form the last 60sec
pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average60s.bufferIndex = (pMeasurement->average60s.bufferIndex + 1) % AVG60_SAMPLE_SIZE;
pMeasurement->average60s.bufferIndex = (pMeasurement->average60s.bufferIndex + 1) % AVG60S_SAMPLE_SIZE;
if (pMeasurement->average60s.bufferCount < AVG60_SAMPLE_SIZE)
if (pMeasurement->average60s.bufferCount < AVG60S_SAMPLE_SIZE)
{
pMeasurement->average60s.bufferCount++;
}
if (pMeasurement->average60s.bufferCount == 0U)
{
pMeasurement->average60s.fValue = pMeasurement->fCurrentValue;
}
sum = 0.0;
for (int i = 0; i < pMeasurement->average60s.bufferCount; i++)
for (int i = 0; i <= pMeasurement->average60s.bufferCount; i++)
{
sum += pMeasurement->average60s.samples[i];
}
pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount;
// Damped current value
if (pMeasurement->fDampedValue == INITIALISATION_VALUE)
{
pMeasurement->fDampedValue = pMeasurement->fCurrentValue;
}
else
{
if (pMeasurement->fCurrentValue > pMeasurement->fDampedValue)
{
pMeasurement->fDampedValue = pMeasurement->fDampedValue + (DAMPING_FACTOR_WARMER * (pMeasurement->fCurrentValue - pMeasurement->fDampedValue));
}
if (pMeasurement->fCurrentValue < pMeasurement->fDampedValue)
{
pMeasurement->fDampedValue = pMeasurement->fDampedValue - (DAMPING_FACTOR_COLDER * (pMeasurement->fDampedValue - pMeasurement->fCurrentValue));
}
}
}
void updatePrediction(sMeasurement *pMeasurement)
{
if (!pMeasurement)
return;
// Update predict60s buffer
sPredict *predict60s = &pMeasurement->predict60s;
predict60s->samples[predict60s->bufferIndex] = pMeasurement->fCurrentValue;
predict60s->bufferIndex = (predict60s->bufferIndex + 1) % PRED60S_SAMPLE_SIZE;
if (predict60s->bufferCount < PRED60S_SAMPLE_SIZE)
predict60s->bufferCount++;
// Predict 60s future value using linear regression
predict60s->fValue = linearRegressionPredict(
predict60s->samples,
predict60s->bufferCount,
predict60s->bufferIndex,
predict60s->bufferCount + 60.0f);
}
void taskInput(void *pvParameters)
@ -163,7 +230,7 @@ void taskInput(void *pvParameters)
if (ds18x20_measure_and_read_multi(uDS18B20Pin, uOneWireAddresses, sSensorCount, fDS18B20Temps) != ESP_OK)
{
ESP_LOGE(TAG, "1-Wire devices read error");
vTaskDelay(PERIODIC_INTERVAL * 100U / portTICK_PERIOD_MS); //Wait 100ms if bus error occurred
vTaskDelay(PERIODIC_INTERVAL * 100U / portTICK_PERIOD_MS); // Wait 100ms if bus error occurred
}
else
{
@ -178,21 +245,25 @@ void taskInput(void *pvParameters)
sChamperTemperature.fCurrentValue = temp_c;
sChamperTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sChamperTemperature);
updatePrediction(&sChamperTemperature);
break;
case ((uint64_t)uOutdoorTempSensorAddr):
sOutdoorTemperature.fCurrentValue = temp_c;
sOutdoorTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sOutdoorTemperature);
updatePrediction(&sOutdoorTemperature);
break;
case ((uint64_t)uInletFlowTempSensorAddr):
sInletFlowTemperature.fCurrentValue = temp_c;
sInletFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sInletFlowTemperature);
updatePrediction(&sInletFlowTemperature);
break;
case ((uint64_t)uReturnFlowTempSensorAddr):
sReturnFlowTemperature.fCurrentValue = temp_c;
sReturnFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sReturnFlowTemperature);
updatePrediction(&sReturnFlowTemperature);
break;
default:
break;
@ -216,6 +287,39 @@ void taskInput(void *pvParameters)
}
}
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex)
{
if (count == 0)
return INITIALISATION_VALUE; // No prediction possible with no data
float sumX = INITIALISATION_VALUE, sumY = INITIALISATION_VALUE, sumXY = INITIALISATION_VALUE, sumX2 = INITIALISATION_VALUE;
for (size_t i = 0; i < count; i++)
{
// Calculate the circular buffer index for the current sample
size_t circularIndex = (bufferIndex + i + 1) % count;
float x = (float)i; // Time index
float y = samples[circularIndex]; // Sample value
sumX += x;
sumY += y;
sumXY += x * y;
sumX2 += x * x;
}
// Calculate slope (m) and intercept (b) of the line: y = mx + b
float denominator = (count * sumX2 - sumX * sumX);
if (fabs(denominator) < 1e-6) // Avoid division by zero
return samples[bufferIndex]; // Return the latest value as prediction
float m = (count * sumXY - sumX * sumY) / denominator;
float b = (sumY - m * sumX) / count;
// Predict value at futureIndex
return m * futureIndex + b;
}
sMeasurement getChamberTemperature(void)
{
sMeasurement ret;

View File

@ -1,8 +1,13 @@
#pragma once
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define AVG10_SAMPLE_SIZE 10U
#define AVG60_SAMPLE_SIZE 60U
#define INITIALISATION_VALUE 0.0f
#define AVG10S_SAMPLE_SIZE 10U
#define AVG60S_SAMPLE_SIZE 60U
#define AVG24H_SAMPLE_SIZE 24U
#define PRED60S_SAMPLE_SIZE 60U
#define DAMPING_FACTOR_WARMER 0.00001f // 0.001%
#define DAMPING_FACTOR_COLDER 0.00005f // 0.005%
typedef enum _BurnerErrorState
{
@ -19,16 +24,26 @@ typedef enum _MeasurementErrorState
typedef struct _Average
{
float fValue;
float samples[MAX(AVG10_SAMPLE_SIZE, AVG60_SAMPLE_SIZE)];
float samples[MAX(AVG10S_SAMPLE_SIZE, MAX(AVG60S_SAMPLE_SIZE, AVG24H_SAMPLE_SIZE))];
size_t bufferIndex;
size_t bufferCount;
} sAverage;
typedef struct _Predict
{
float fValue;
float samples[PRED60S_SAMPLE_SIZE];
size_t bufferIndex;
size_t bufferCount;
} sPredict;
typedef struct _Measurement
{
float fCurrentValue;
float fDampedValue;
sAverage average10s;
sAverage average60s;
sPredict predict60s;
eMeasurementErrorState state;
} sMeasurement;

View File

@ -32,7 +32,7 @@ void initMetrics(void)
BaseType_t taskCreated = xTaskCreate(
taskMetrics, // Function to implement the task
"taskMetrics", // Task name
16384, // Stack size (in words, not bytes)
32768, // Stack size (in words, not bytes)
NULL, // Parameters to the task function (none in this case)
5, // Task priority (higher number = higher priority)
NULL // Task handle (optional)
@ -56,13 +56,13 @@ void taskMetrics(void *pvParameters)
u16MetricCounter = 0U;
/*Burner Error State*/
// Burner Error State
strcpy(aMetrics[u16MetricCounter].caMetricName, "burner_fault_pending");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getBurnerError();
u16MetricCounter++;
/*Circulation Pump State*/
// Circulation Pump State
if (getCirculationPumpState() == ENABLED)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "circulation_pump_enabled");
@ -78,7 +78,7 @@ void taskMetrics(void *pvParameters)
u16MetricCounter++;
}
/*Burner State*/
// Burner State
if (getBurnerState() == ENABLED)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "burner_enabled");
@ -94,7 +94,7 @@ void taskMetrics(void *pvParameters)
u16MetricCounter++;
}
/*Safety Contact State*/
// Safety Contact State
if (getSafetyControlState() == ENABLED)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "safety_contact_enabled");
@ -110,79 +110,127 @@ void taskMetrics(void *pvParameters)
u16MetricCounter++;
}
/*Chamber Temperature*/
// Chamber Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().fCurrentValue;
u16MetricCounter++;
/*Chamber Temperature Average 10s*/
// Chamber Temperature Average 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average10s.fValue;
u16MetricCounter++;
/*Chamber Temperature Average 60s*/
// Chamber Temperature Average 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average60s.fValue;
u16MetricCounter++;
/*Inlet Flow Temperature*/
// Chamber Temperature Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().fDampedValue;
u16MetricCounter++;
// Chamber Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().predict60s.fValue;
u16MetricCounter++;
// Inlet Flow Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().fCurrentValue;
u16MetricCounter++;
/*Inlet Flow Temperature Average 10s*/
// Inlet Flow Temperature Average 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average10s.fValue;
u16MetricCounter++;
/*Inlet Flow Temperature Average 60s*/
// Inlet Flow Temperature Average 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average60s.fValue;
u16MetricCounter++;
/*Outdoor Temperature*/
// Inlet Flow Temperature Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().fDampedValue;
u16MetricCounter++;
// Inlet Flow Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().predict60s.fValue;
u16MetricCounter++;
// Outdoor Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().fCurrentValue;
u16MetricCounter++;
/*Outdoor Temperature Average 10s*/
// Outdoor Temperature Average 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average10s.fValue;
u16MetricCounter++;
/*Outdoor Temperature Average 60s*/
// Outdoor Temperature Average 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average60s.fValue;
u16MetricCounter++;
/*Return Flow Temperature*/
// Outdoor Temperature Average Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().fDampedValue;
u16MetricCounter++;
// Outdoor Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().predict60s.fValue;
u16MetricCounter++;
// Return Flow Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().fCurrentValue;
u16MetricCounter++;
/*Return Flow Temperature Average 10s*/
// Return Flow Temperature Average 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average10s.fValue;
u16MetricCounter++;
/*Return Flow Temperature Average 60s*/
// Return Flow Temperature Average 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average60s.fValue;
u16MetricCounter++;
/*Sensor State*/
// Return Flow Temperature Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().fDampedValue;
u16MetricCounter++;
// Return Flow Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().predict60s.fValue;
u16MetricCounter++;
// Sensor State
sSensorSanityCheck aChecks[NUMBER_OF_SENSOR_SANITY_CHECKS];
getSensorSanityStates(aChecks);
for (size_t i = 0; i < NUMBER_OF_SENSOR_SANITY_CHECKS; i++)
@ -194,25 +242,50 @@ void taskMetrics(void *pvParameters)
u16MetricCounter++;
}
/*Safety State*/
// Safety State
strcpy(aMetrics[u16MetricCounter].caMetricName, "safety_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getSafetyState();
u16MetricCounter++;
/*Control State*/
// Control State
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getControlState();
u16MetricCounter++;
/*SNTP State*/
// Control Current Weekday
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_weekday");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getControlCurrentWeekday();
u16MetricCounter++;
// Control Current Entry Time
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_entry_time");
aMetrics[u16MetricCounter].type = INTEGER_64;
int64_t i64SecondsSinceMidnight = (getControlCurrentTemperatureEntry().timestamp.hour * 60U * 60U) + (getControlCurrentTemperatureEntry().timestamp.minute * 60U);
aMetrics[u16MetricCounter].i64MetricValue = i64SecondsSinceMidnight;
u16MetricCounter++;
// Control Current Entry Chamber Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_entry_chamber_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getControlCurrentTemperatureEntry().fChamberTemperature;
u16MetricCounter++;
// Control Current Entry Return Flow Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_entry_return_flow_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getControlCurrentTemperatureEntry().fReturnFlowTemperature;
u16MetricCounter++;
// SNTP State
strcpy(aMetrics[u16MetricCounter].caMetricName, "sntp_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getSntpState();
u16MetricCounter++;
/*System Time*/
// System Time
time_t now;
time(&now);
strcpy(aMetrics[u16MetricCounter].caMetricName, "system_unixtime");
@ -220,13 +293,13 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].i64MetricValue = now;
u16MetricCounter++;
/*Uptime*/
// Uptime
strcpy(aMetrics[u16MetricCounter].caMetricName, "uptime_seconds");
aMetrics[u16MetricCounter].type = INTEGER_64;
aMetrics[u16MetricCounter].i64MetricValue = (esp_timer_get_time() / 1000000U);
u16MetricCounter++;
/*Wifi RSSI*/
// Wifi RSSI
wifi_ap_record_t ap;
esp_wifi_sta_get_ap_info(&ap);
strcpy(aMetrics[u16MetricCounter].caMetricName, "wifi_rssi");
@ -234,6 +307,7 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].i64MetricValue = ap.rssi;
u16MetricCounter++;
ESP_ERROR_CHECK(u16MetricCounter > METRIC_MAX_COUNT);
vSetMetrics(aMetrics, u16MetricCounter);
}
}
@ -243,7 +317,7 @@ void vSetMetrics(sMetric *paMetrics, uint16_t u16Size)
if (xSemaphoreTakeRecursive(xMutexAccessMetricResponse, pdMS_TO_TICKS(5000)) == pdTRUE)
{
memset(caHtmlResponse, 0, strlen(caHtmlResponse));
memset(caHtmlResponse, 0U, strlen(caHtmlResponse));
for (uint16_t u16Index = 0U; u16Index < u16Size; u16Index++)
{
char caValueBuffer[64];
@ -263,6 +337,7 @@ void vSetMetrics(sMetric *paMetrics, uint16_t u16Size)
break;
}
// printf("%s\n", paMetrics[u16Index].caMetricName);
// printf("%s\n", caValueBuffer);
strcat(caHtmlResponse, paMetrics[u16Index].caMetricName);
strcat(caHtmlResponse, caValueBuffer);

View File

@ -2,9 +2,9 @@
#include <esp_http_server.h>
#define HTML_RESPONSE_SIZE 1024U
#define METRIC_NAME_MAX_SIZE 256U
#define METRIC_MAX_COUNT 64U
#define HTML_RESPONSE_SIZE 4096U
#define METRIC_NAME_MAX_SIZE 64U
#define METRIC_MAX_COUNT 38U
typedef enum _MetricValueType
{

View File

@ -155,5 +155,16 @@ void getSensorSanityStates(sSensorSanityCheck *pSensorSanityChecks)
eSafetyState getSafetyState(void)
{
return sSafetyState;
eSafetyState state = SAFETY_NO_ERROR;
if (xSemaphoreTakeRecursive(xMutexAccessSafety, pdMS_TO_TICKS(5000)) == pdTRUE)
{
state = sSafetyState;
xSemaphoreGiveRecursive(xMutexAccessSafety);
}
else
{
state = SAFETY_INTERNAL_ERROR;
ESP_LOGE(TAG, "Unable to take mutex: getSafetyState()");
}
return state;
}