/******************************************************************************* * * ttn-esp32 - The Things Network device library for ESP-IDF / SX127x * * Copyright (c) 2018 Manuel Bleichenbacher * * Licensed under MIT License * https://opensource.org/licenses/MIT * * Sample program showing how to send and receive messages. *******************************************************************************/ #include "freertos/FreeRTOS.h" #include "esp_event.h" #include "driver/gpio.h" #include "nvs_flash.h" #include "TheThingsNetwork.h" // NOTE: // The LoRaWAN frequency and the radio chip must be configured by running 'idf.py menuconfig'. // Go to Components / The Things Network, select the appropriate values and save. // Copy the below hex strings from the TTN console (Applications > Your application > End devices // > Your device > Activation information) // AppEUI (sometimes called JoinEUI) const char *appEui = "????????????????"; // DevEUI const char *devEui = "????????????????"; // AppKey const char *appKey = "????????????????????????????????"; // Pins and other resources #define TTN_SPI_HOST SPI2_HOST #define TTN_SPI_DMA_CHAN SPI_DMA_DISABLED #define TTN_PIN_SPI_SCLK 5 #define TTN_PIN_SPI_MOSI 27 #define TTN_PIN_SPI_MISO 19 #define TTN_PIN_NSS 18 #define TTN_PIN_RXTX TTN_NOT_CONNECTED #define TTN_PIN_RST 14 #define TTN_PIN_DIO0 26 #define TTN_PIN_DIO1 35 static TheThingsNetwork ttn; const unsigned TX_INTERVAL = 30; static uint8_t msgData[] = "Hello, world"; void printRFSettings(const char* window, const TTNRFSettings& settings) { int bw = (1 << (static_cast(settings.bandwidth) - 1)) * 125; int sf = static_cast(settings.spreadingFactor) + 5; if (settings.spreadingFactor == kTTNSFNone) { printf("%s: not used\n", window); } else if (settings.spreadingFactor == kTTNFSK) { printf("%s: FSK, BW %dkHz, %d.%d MHz\n", window, bw, settings.frequency / 1000000, (settings.frequency % 1000000 + 50000) / 100000); } else { printf("%s: SF%d, BW %dkHz, %d.%d MHz\n", window, sf, bw, settings.frequency / 1000000, (settings.frequency % 1000000 + 50000) / 100000); } } void printAllRFSettings() { printRFSettings("TX ", ttn.txSettings()); printRFSettings("RX1", ttn.rx1Settings()); printRFSettings("RX2", ttn.rx2Settings()); } void sendMessages(void* pvParameter) { while (1) { printf("Sending message...\n"); TTNResponseCode res = ttn.transmitMessage(msgData, sizeof(msgData) - 1); printf(res == kTTNSuccessfulTransmission ? "Message sent.\n" : "Transmission failed.\n"); printAllRFSettings(); vTaskDelay(TX_INTERVAL * pdMS_TO_TICKS(1000)); } } void messageReceived(const uint8_t* message, size_t length, ttn_port_t port) { printf("Message of %d bytes received on port %d:", length, port); for (int i = 0; i < length; i++) printf(" %02x", message[i]); printf("\n"); printf("RSSI: %d dBm\n", ttn.rssi()); } extern "C" void app_main(void) { esp_err_t err; // Initialize the GPIO ISR handler service err = gpio_install_isr_service(ESP_INTR_FLAG_IRAM); ESP_ERROR_CHECK(err); // Initialize the NVS (non-volatile storage) for saving and restoring the keys err = nvs_flash_init(); ESP_ERROR_CHECK(err); // Initialize SPI bus spi_bus_config_t spi_bus_config; spi_bus_config.miso_io_num = TTN_PIN_SPI_MISO; spi_bus_config.mosi_io_num = TTN_PIN_SPI_MOSI; spi_bus_config.sclk_io_num = TTN_PIN_SPI_SCLK; spi_bus_config.quadwp_io_num = -1; spi_bus_config.quadhd_io_num = -1; spi_bus_config.max_transfer_sz = 0; err = spi_bus_initialize(TTN_SPI_HOST, &spi_bus_config, TTN_SPI_DMA_CHAN); ESP_ERROR_CHECK(err); // Configure the SX127x pins ttn.configurePins(TTN_SPI_HOST, TTN_PIN_NSS, TTN_PIN_RXTX, TTN_PIN_RST, TTN_PIN_DIO0, TTN_PIN_DIO1); // The below line can be commented after the first run as the data is saved in NVS ttn.provision(devEui, appEui, appKey); // Register callback for received messages ttn.onMessage(messageReceived); printf("Joining...\n"); if (ttn.join()) { printf("Joined.\n"); printAllRFSettings(); printf("RSSI: %d dBm\n", ttn.rssi()); xTaskCreate(sendMessages, "send_messages", 1024 * 4, (void* )0, 3, nullptr); } else { printf("Join failed. Goodbye\n"); } }