/******************************************************************************* * * ttn-esp32 - The Things Network device library for ESP-IDF / SX127x * * Copyright (c) 2018-2019 Manuel Bleichenbacher * * Licensed under MIT License * https://opensource.org/licenses/MIT * * Task listening on a UART port for provisioning commands. *******************************************************************************/ #include "freertos/FreeRTOS.h" #include "driver/uart.h" #include "esp_event.h" #include "esp_log.h" #include "esp_system.h" #include "nvs_flash.h" #include "TTNProvisioning.h" #include "lmic/lmic.h" #include "hal/hal_esp32.h" #if defined(TTN_HAS_AT_COMMANDS) const uart_port_t UART_NUM = (uart_port_t) CONFIG_TTN_PROVISION_UART_NUM; const int MAX_LINE_LENGTH = 128; #endif static const char* const TAG = "ttn_prov"; static const char* const NVS_FLASH_PARTITION = "ttn"; static const char* const NVS_FLASH_KEY_DEV_EUI = "devEui"; static const char* const NVS_FLASH_KEY_APP_EUI = "appEui"; static const char* const NVS_FLASH_KEY_APP_KEY = "appKey"; static uint8_t global_dev_eui[8]; static uint8_t global_app_eui[8]; static uint8_t global_app_key[16]; #if defined(TTN_HAS_AT_COMMANDS) void ttn_provisioning_task_caller(void* pvParameter); #endif // --- LMIC callbacks // This EUI must be in little-endian format, so least-significant-byte first. // When copying an EUI from ttnctl output, this means to reverse the bytes. // For TTN issued EUIs the last bytes should be 0xD5, 0xB3, 0x70. // The order is swapped in provisioning_decode_keys(). void os_getArtEui (u1_t* buf) { memcpy(buf, global_app_eui, 8); } // This should also be in little endian format, see above. void os_getDevEui (u1_t* buf) { memcpy(buf, global_dev_eui, 8); } // This key should be in big endian format (or, since it is not really a number // but a block of memory, endianness does not really apply). In practice, a key // taken from ttnctl can be copied as-is. void os_getDevKey (u1_t* buf) { memcpy(buf, global_app_key, 16); } // --- Constructor TTNProvisioning::TTNProvisioning() : have_keys(false) #if defined(TTN_HAS_AT_COMMANDS) , uart_queue(nullptr), line_buf(nullptr), line_length(0), last_line_end_char(0), quit_task(false) #endif { } // --- Provisioning task #if defined(TTN_HAS_AT_COMMANDS) void TTNProvisioning::startTask() { #if defined(TTN_CONFIG_UART) configUART(); #endif esp_err_t err = uart_driver_install(UART_NUM, 2048, 2048, 20, &uart_queue, 0); ESP_ERROR_CHECK(err); xTaskCreate(ttn_provisioning_task_caller, "ttn_provision", 2048, this, 1, nullptr); } void ttn_provisioning_task_caller(void* pvParameter) { TTNProvisioning* provisioning = (TTNProvisioning*)pvParameter; provisioning->provisioningTask(); vTaskDelete(nullptr); } void TTNProvisioning::provisioningTask() { line_buf = (char*)malloc(MAX_LINE_LENGTH + 1); line_length = 0; uart_event_t event; ESP_LOGI(TAG, "Provisioning task started"); while (!quit_task) { if (!xQueueReceive(uart_queue, &event, portMAX_DELAY)) continue; switch (event.type) { case UART_DATA: addLineData(event.size); break; case UART_FIFO_OVF: case UART_BUFFER_FULL: uart_flush_input(UART_NUM); xQueueReset(uart_queue); break; default: break; } } free(line_buf); uart_driver_delete(UART_NUM); } void TTNProvisioning::addLineData(int numBytes) { int n; top: n = numBytes; if (line_length + n > MAX_LINE_LENGTH) n = MAX_LINE_LENGTH - line_length; uart_read_bytes(UART_NUM, (uint8_t*)line_buf + line_length, n, portMAX_DELAY); int start_at = line_length; line_length += n; detectLineEnd(start_at); if (n < numBytes) { numBytes -= n; goto top; } } void TTNProvisioning::detectLineEnd(int start_at) { top: for (int p = start_at; p < line_length; p++) { char ch = line_buf[p]; if (ch == 0x0d || ch == 0x0a) { if (p > 0) uart_write_bytes(UART_NUM, line_buf + start_at, line_length - start_at - 1); if (p > 0 || ch == 0x0d || last_line_end_char == 0x0a) uart_write_bytes(UART_NUM, "\r\n", 2); line_buf[p] = 0; last_line_end_char = ch; if (p > 0) processLine(); memcpy(line_buf, line_buf + p + 1, line_length - p - 1); line_length -= p + 1; start_at = 0; goto top; } } if (line_length > 0) uart_write_bytes(UART_NUM, line_buf + start_at, line_length - start_at); if (line_length == MAX_LINE_LENGTH) line_length = 0; // Line too long; flush it } void TTNProvisioning::processLine() { bool is_ok = true; bool reset_needed = false; // Expected format: // AT+PROV? // AT+PROV=hex16-hex16-hex32 // AT+PROVM=hex16-hex32 // AT+MAC? // AT+HWEUI? if (strcmp(line_buf, "AT+PROV?") == 0) { uint8_t binbuf[8]; char hexbuf[16]; memcpy(binbuf, global_dev_eui, 8); swapBytes(binbuf, 8); binToHexStr(binbuf, 8, hexbuf); uart_write_bytes(UART_NUM, hexbuf, 16); uart_write_bytes(UART_NUM, "-", 1); memcpy(binbuf, global_app_eui, 8); swapBytes(binbuf, 8); binToHexStr(binbuf, 8, hexbuf); uart_write_bytes(UART_NUM, hexbuf, 16); uart_write_bytes(UART_NUM, "-00000000000000000000000000000000\r\n", 35); } else if (strncmp(line_buf, "AT+PROV=", 8) == 0) { is_ok = strlen(line_buf) == 74 && line_buf[24] == '-' && line_buf[41] == '-'; if (is_ok) { line_buf[24] = 0; line_buf[41] = 0; is_ok = decodeKeys(line_buf + 8, line_buf + 25, line_buf + 42); if (is_ok) is_ok = saveKeys(); reset_needed = is_ok; } } else if (strncmp(line_buf, "AT+PROVM=", 8) == 0) { is_ok = strlen(line_buf) == 58 && line_buf[25] == '-'; if (is_ok) { line_buf[25] = 0; is_ok = fromMAC(line_buf + 9, line_buf + 26); if (is_ok) is_ok = saveKeys(); reset_needed = is_ok; } } else if (strcmp(line_buf, "AT+MAC?") == 0) { uint8_t mac[6]; char hexbuf[12]; esp_err_t err = esp_efuse_mac_get_default(mac); ESP_ERROR_CHECK(err); binToHexStr(mac, 6, hexbuf); for (int i = 0; i < 12; i += 2) { if (i > 0) uart_write_bytes(UART_NUM, ":", 1); uart_write_bytes(UART_NUM, hexbuf + i, 2); } uart_write_bytes(UART_NUM, "\r\n", 2); } else if (strcmp(line_buf, "AT+HWEUI?") == 0) { uint8_t mac[6]; char hexbuf[12]; esp_err_t err = esp_efuse_mac_get_default(mac); ESP_ERROR_CHECK(err); binToHexStr(mac, 6, hexbuf); for (int i = 0; i < 12; i += 2) { uart_write_bytes(UART_NUM, hexbuf + i, 2); if (i == 4) uart_write_bytes(UART_NUM, "FFFE", 4); } uart_write_bytes(UART_NUM, "\r\n", 2); } else if (strcmp(line_buf, "AT+PROVQ") == 0) { quit_task = true; } else if (strcmp(line_buf, "AT") != 0) { is_ok = false; } if (reset_needed) { ttn_hal.enterCriticalSection(); LMIC_reset(); ttn_hal.leaveCriticalSection(); LMIC.client.eventCb(LMIC.client.eventUserData, EV_RESET); } uart_write_bytes(UART_NUM, is_ok ? "OK\r\n" : "ERROR\r\n", is_ok ? 4 : 7); } #endif #if defined(TTN_CONFIG_UART) void TTNProvisioning::configUART() { esp_err_t err; uart_config_t uart_config = { .baud_rate = CONFIG_TTN_PROVISION_UART_BAUDRATE, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .rx_flow_ctrl_thresh = 0, .use_ref_tick = false }; err = uart_param_config(UART_NUM, &uart_config); ESP_ERROR_CHECK(err); err = uart_set_pin(UART_NUM, CONFIG_TTN_PROVISION_UART_TX_GPIO, CONFIG_TTN_PROVISION_UART_RX_GPIO, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE); ESP_ERROR_CHECK(err); } #endif // --- Key handling bool TTNProvisioning::haveKeys() { return have_keys; } bool TTNProvisioning::decodeKeys(const char *dev_eui, const char *app_eui, const char *app_key) { return decode(true, dev_eui, app_eui, app_key); } bool TTNProvisioning::fromMAC(const char *app_eui, const char *app_key) { uint8_t mac[6]; esp_err_t err = esp_efuse_mac_get_default(mac); ESP_ERROR_CHECK(err); global_dev_eui[7] = mac[0]; global_dev_eui[6] = mac[1]; global_dev_eui[5] = mac[2]; global_dev_eui[4] = 0xff; global_dev_eui[3] = 0xfe; global_dev_eui[2] = mac[3]; global_dev_eui[1] = mac[4]; global_dev_eui[0] = mac[5]; return decode(false, nullptr, app_eui, app_key); } bool TTNProvisioning::decode(bool incl_dev_eui, const char *dev_eui, const char *app_eui, const char *app_key) { uint8_t buf_dev_eui[8]; uint8_t buf_app_eui[8]; uint8_t buf_app_key[16]; if (incl_dev_eui && (strlen(dev_eui) != 16 || !hexStrToBin(dev_eui, buf_dev_eui, 8))) { ESP_LOGW(TAG, "Invalid device EUI: %s", dev_eui); return false; } if (incl_dev_eui) swapBytes(buf_dev_eui, 8); if (strlen(app_eui) != 16 || !hexStrToBin(app_eui, buf_app_eui, 8)) { ESP_LOGW(TAG, "Invalid application EUI: %s", app_eui); return false; } swapBytes(buf_app_eui, 8); if (strlen(app_key) != 32 || !hexStrToBin(app_key, buf_app_key, 16)) { ESP_LOGW(TAG, "Invalid application key: %s", app_key); return false; } if (incl_dev_eui) memcpy(global_dev_eui, buf_dev_eui, sizeof(global_dev_eui)); memcpy(global_app_eui, buf_app_eui, sizeof(global_app_eui)); memcpy(global_app_key, buf_app_key, sizeof(global_app_key)); have_keys = !isAllZeros(global_dev_eui, sizeof(global_dev_eui)) && !isAllZeros(global_app_eui, sizeof(global_app_eui)) && !isAllZeros(global_app_key, sizeof(global_app_key)); return true; } // --- Non-volatile storage bool TTNProvisioning::saveKeys() { bool result = false; nvs_handle handle = 0; esp_err_t res = nvs_open(NVS_FLASH_PARTITION, NVS_READWRITE, &handle); if (res == ESP_ERR_NVS_NOT_INITIALIZED) { ESP_LOGW(TAG, "NVS storage is not initialized. Call 'nvs_flash_init()' first."); goto done; } ESP_ERROR_CHECK(res); if (res != ESP_OK) goto done; if (!writeNvsValue(handle, NVS_FLASH_KEY_DEV_EUI, global_dev_eui, sizeof(global_dev_eui))) goto done; if (!writeNvsValue(handle, NVS_FLASH_KEY_APP_EUI, global_app_eui, sizeof(global_app_eui))) goto done; if (!writeNvsValue(handle, NVS_FLASH_KEY_APP_KEY, global_app_key, sizeof(global_app_key))) goto done; res = nvs_commit(handle); ESP_ERROR_CHECK(res); result = true; ESP_LOGI(TAG, "Dev and app EUI and app key saved in NVS storage"); done: nvs_close(handle); return result; } bool TTNProvisioning::restoreKeys(bool silent) { uint8_t buf_dev_eui[8]; uint8_t buf_app_eui[8]; uint8_t buf_app_key[16]; nvs_handle handle = 0; esp_err_t res = nvs_open(NVS_FLASH_PARTITION, NVS_READONLY, &handle); if (res == ESP_ERR_NVS_NOT_FOUND) return false; // partition does not exist yet if (res == ESP_ERR_NVS_NOT_INITIALIZED) { ESP_LOGW(TAG, "NVS storage is not initialized. Call 'nvs_flash_init()' first."); goto done; } ESP_ERROR_CHECK(res); if (res != ESP_OK) goto done; if (!readNvsValue(handle, NVS_FLASH_KEY_DEV_EUI, buf_dev_eui, sizeof(global_dev_eui), silent)) goto done; if (!readNvsValue(handle, NVS_FLASH_KEY_APP_EUI, buf_app_eui, sizeof(global_app_eui), silent)) goto done; if (!readNvsValue(handle, NVS_FLASH_KEY_APP_KEY, buf_app_key, sizeof(global_app_key), silent)) goto done; memcpy(global_dev_eui, buf_dev_eui, sizeof(global_dev_eui)); memcpy(global_app_eui, buf_app_eui, sizeof(global_app_eui)); memcpy(global_app_key, buf_app_key, sizeof(global_app_key)); have_keys = !isAllZeros(global_dev_eui, sizeof(global_dev_eui)) && !isAllZeros(global_app_eui, sizeof(global_app_eui)) && !isAllZeros(global_app_key, sizeof(global_app_key)); if (have_keys) { ESP_LOGI(TAG, "Dev and app EUI and app key have been restored from NVS storage"); } else { ESP_LOGW(TAG, "Dev and app EUI and app key are invalid (zeroes only)"); } done: nvs_close(handle); return true; } bool TTNProvisioning::readNvsValue(nvs_handle handle, const char* key, uint8_t* data, size_t expected_length, bool silent) { size_t size = expected_length; esp_err_t res = nvs_get_blob(handle, key, data, &size); if (res == ESP_OK && size == expected_length) return true; if (res == ESP_OK && size != expected_length) { if (!silent) ESP_LOGW(TAG, "Invalid size of NVS data for %s", key); return false; } if (res == ESP_ERR_NVS_NOT_FOUND) { if (!silent) ESP_LOGW(TAG, "No NVS data found for %s", key); return false; } ESP_ERROR_CHECK(res); return false; } bool TTNProvisioning::writeNvsValue(nvs_handle handle, const char* key, const uint8_t* data, size_t len) { uint8_t buf[16]; if (readNvsValue(handle, key, buf, len, true) && memcmp(buf, data, len) == 0) return true; // unchanged esp_err_t res = nvs_set_blob(handle, key, data, len); ESP_ERROR_CHECK(res); return res == ESP_OK; } // --- Helper functions --- bool TTNProvisioning::hexStrToBin(const char *hex, uint8_t *buf, int len) { const char* ptr = hex; for (int i = 0; i < len; i++) { int val = hexTupleToByte(ptr); if (val < 0) return false; buf[i] = val; ptr += 2; } return true; } int TTNProvisioning::hexTupleToByte(const char *hex) { int nibble1 = hexDigitToVal(hex[0]); if (nibble1 < 0) return -1; int nibble2 = hexDigitToVal(hex[1]); if (nibble2 < 0) return -1; return (nibble1 << 4) | nibble2; } int TTNProvisioning::hexDigitToVal(char ch) { if (ch >= '0' && ch <= '9') return ch - '0'; if (ch >= 'A' && ch <= 'F') return ch + 10 - 'A'; if (ch >= 'a' && ch <= 'f') return ch + 10 - 'a'; return -1; } void TTNProvisioning::binToHexStr(const uint8_t* buf, int len, char* hex) { for (int i = 0; i < len; i++) { uint8_t b = buf[i]; *hex = valToHexDigit((b & 0xf0) >> 4); hex++; *hex = valToHexDigit(b & 0x0f); hex++; } } char TTNProvisioning::valToHexDigit(int val) { return "0123456789ABCDEF"[val]; } void TTNProvisioning::swapBytes(uint8_t* buf, int len) { uint8_t* p1 = buf; uint8_t* p2 = buf + len - 1; while (p1 < p2) { uint8_t t = *p1; *p1 = *p2; *p2 = t; p1++; p2--; } } bool TTNProvisioning::isAllZeros(const uint8_t* buf, int len) { for (int i = 0; i < len; i++) if (buf[i] != 0) return false; return true; }