Make the repo installable as a package (#26)
This commit is contained in:
1
clip/__init__.py
Normal file
1
clip/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .clip import *
|
BIN
clip/bpe_simple_vocab_16e6.txt.gz
Normal file
BIN
clip/bpe_simple_vocab_16e6.txt.gz
Normal file
Binary file not shown.
141
clip/clip.py
Normal file
141
clip/clip.py
Normal file
@ -0,0 +1,141 @@
|
||||
import hashlib
|
||||
import os
|
||||
import urllib
|
||||
import warnings
|
||||
from typing import Union, List
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
||||
from tqdm import tqdm
|
||||
|
||||
from .model import build_model
|
||||
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
||||
|
||||
__all__ = ["available_models", "load", "tokenize"]
|
||||
_tokenizer = _Tokenizer()
|
||||
|
||||
_MODELS = {
|
||||
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
||||
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
||||
}
|
||||
|
||||
|
||||
def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")):
|
||||
os.makedirs(root, exist_ok=True)
|
||||
filename = os.path.basename(url)
|
||||
|
||||
expected_sha256 = url.split("/")[-2]
|
||||
download_target = os.path.join(root, filename)
|
||||
|
||||
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
||||
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
||||
|
||||
if os.path.isfile(download_target):
|
||||
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
||||
return download_target
|
||||
else:
|
||||
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
||||
|
||||
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
||||
with tqdm(total=int(source.info().get("Content-Length")), ncols=80) as loop:
|
||||
while True:
|
||||
buffer = source.read(8192)
|
||||
if not buffer:
|
||||
break
|
||||
|
||||
output.write(buffer)
|
||||
loop.update(len(buffer))
|
||||
|
||||
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
||||
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
||||
|
||||
return download_target
|
||||
|
||||
|
||||
def available_models():
|
||||
return list(_MODELS.keys())
|
||||
|
||||
|
||||
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=True):
|
||||
if name not in _MODELS:
|
||||
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
||||
|
||||
model_path = _download(_MODELS[name])
|
||||
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
||||
n_px = model.input_resolution.item()
|
||||
|
||||
transform = Compose([
|
||||
Resize(n_px, interpolation=Image.BICUBIC),
|
||||
CenterCrop(n_px),
|
||||
lambda image: image.convert("RGB"),
|
||||
ToTensor(),
|
||||
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
||||
])
|
||||
|
||||
if not jit:
|
||||
model = build_model(model.state_dict()).to(device)
|
||||
if str(device) == "cpu":
|
||||
model.float()
|
||||
return model, transform
|
||||
|
||||
# patch the device names
|
||||
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
||||
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
||||
|
||||
def patch_device(module):
|
||||
graphs = [module.graph] if hasattr(module, "graph") else []
|
||||
if hasattr(module, "forward1"):
|
||||
graphs.append(module.forward1.graph)
|
||||
|
||||
for graph in graphs:
|
||||
for node in graph.findAllNodes("prim::Constant"):
|
||||
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
||||
node.copyAttributes(device_node)
|
||||
|
||||
model.apply(patch_device)
|
||||
patch_device(model.encode_image)
|
||||
patch_device(model.encode_text)
|
||||
|
||||
# patch dtype to float32 on CPU
|
||||
if str(device) == "cpu":
|
||||
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
||||
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
||||
float_node = float_input.node()
|
||||
|
||||
def patch_float(module):
|
||||
graphs = [module.graph] if hasattr(module, "graph") else []
|
||||
if hasattr(module, "forward1"):
|
||||
graphs.append(module.forward1.graph)
|
||||
|
||||
for graph in graphs:
|
||||
for node in graph.findAllNodes("aten::to"):
|
||||
inputs = list(node.inputs())
|
||||
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
||||
if inputs[i].node()["value"] == 5:
|
||||
inputs[i].node().copyAttributes(float_node)
|
||||
|
||||
model.apply(patch_float)
|
||||
patch_float(model.encode_image)
|
||||
patch_float(model.encode_text)
|
||||
|
||||
model.float()
|
||||
|
||||
return model, transform
|
||||
|
||||
|
||||
def tokenize(texts: Union[str, List[str]], context_length: int = 77):
|
||||
if isinstance(texts, str):
|
||||
texts = [texts]
|
||||
|
||||
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
||||
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
||||
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
||||
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
||||
|
||||
for i, tokens in enumerate(all_tokens):
|
||||
if len(tokens) > context_length:
|
||||
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
||||
result[i, :len(tokens)] = torch.tensor(tokens)
|
||||
|
||||
return result
|
399
clip/model.py
Normal file
399
clip/model.py
Normal file
@ -0,0 +1,399 @@
|
||||
from collections import OrderedDict
|
||||
from typing import Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1):
|
||||
super().__init__()
|
||||
|
||||
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
||||
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
|
||||
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
||||
|
||||
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||||
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = None
|
||||
self.stride = stride
|
||||
|
||||
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
||||
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
||||
self.downsample = nn.Sequential(OrderedDict([
|
||||
("-1", nn.AvgPool2d(stride)),
|
||||
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
||||
("1", nn.BatchNorm2d(planes * self.expansion))
|
||||
]))
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
identity = x
|
||||
|
||||
out = self.relu(self.bn1(self.conv1(x)))
|
||||
out = self.relu(self.bn2(self.conv2(out)))
|
||||
out = self.avgpool(out)
|
||||
out = self.bn3(self.conv3(out))
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
class AttentionPool2d(nn.Module):
|
||||
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
||||
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
||||
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
||||
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
||||
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
||||
self.num_heads = num_heads
|
||||
|
||||
def forward(self, x):
|
||||
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
||||
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
||||
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
||||
x, _ = F.multi_head_attention_forward(
|
||||
query=x, key=x, value=x,
|
||||
embed_dim_to_check=x.shape[-1],
|
||||
num_heads=self.num_heads,
|
||||
q_proj_weight=self.q_proj.weight,
|
||||
k_proj_weight=self.k_proj.weight,
|
||||
v_proj_weight=self.v_proj.weight,
|
||||
in_proj_weight=None,
|
||||
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
||||
bias_k=None,
|
||||
bias_v=None,
|
||||
add_zero_attn=False,
|
||||
dropout_p=0,
|
||||
out_proj_weight=self.c_proj.weight,
|
||||
out_proj_bias=self.c_proj.bias,
|
||||
use_separate_proj_weight=True,
|
||||
training=self.training,
|
||||
need_weights=False
|
||||
)
|
||||
|
||||
return x[0]
|
||||
|
||||
|
||||
class ModifiedResNet(nn.Module):
|
||||
"""
|
||||
A ResNet class that is similar to torchvision's but contains the following changes:
|
||||
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
||||
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
||||
- The final pooling layer is a QKV attention instead of an average pool
|
||||
"""
|
||||
|
||||
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
||||
super().__init__()
|
||||
self.output_dim = output_dim
|
||||
self.input_resolution = input_resolution
|
||||
|
||||
# the 3-layer stem
|
||||
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(width // 2)
|
||||
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(width // 2)
|
||||
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(width)
|
||||
self.avgpool = nn.AvgPool2d(2)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
|
||||
# residual layers
|
||||
self._inplanes = width # this is a *mutable* variable used during construction
|
||||
self.layer1 = self._make_layer(width, layers[0])
|
||||
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
||||
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
||||
|
||||
embed_dim = width * 32 # the ResNet feature dimension
|
||||
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
||||
|
||||
def _make_layer(self, planes, blocks, stride=1):
|
||||
layers = [Bottleneck(self._inplanes, planes, stride)]
|
||||
|
||||
self._inplanes = planes * Bottleneck.expansion
|
||||
for _ in range(1, blocks):
|
||||
layers.append(Bottleneck(self._inplanes, planes))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
def stem(x):
|
||||
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
|
||||
x = self.relu(bn(conv(x)))
|
||||
x = self.avgpool(x)
|
||||
return x
|
||||
|
||||
x = x.type(self.conv1.weight.dtype)
|
||||
x = stem(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
x = self.attnpool(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
"""Subclass torch's LayerNorm to handle fp16."""
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
orig_type = x.dtype
|
||||
ret = super().forward(x.type(torch.float32))
|
||||
return ret.type(orig_type)
|
||||
|
||||
|
||||
class QuickGELU(nn.Module):
|
||||
def forward(self, x: torch.Tensor):
|
||||
return x * torch.sigmoid(1.702 * x)
|
||||
|
||||
|
||||
class ResidualAttentionBlock(nn.Module):
|
||||
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
||||
super().__init__()
|
||||
|
||||
self.attn = nn.MultiheadAttention(d_model, n_head)
|
||||
self.ln_1 = LayerNorm(d_model)
|
||||
self.mlp = nn.Sequential(OrderedDict([
|
||||
("c_fc", nn.Linear(d_model, d_model * 4)),
|
||||
("gelu", QuickGELU()),
|
||||
("c_proj", nn.Linear(d_model * 4, d_model))
|
||||
]))
|
||||
self.ln_2 = LayerNorm(d_model)
|
||||
self.attn_mask = attn_mask
|
||||
|
||||
def attention(self, x: torch.Tensor):
|
||||
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
||||
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = x + self.attention(self.ln_1(x))
|
||||
x = x + self.mlp(self.ln_2(x))
|
||||
return x
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.layers = layers
|
||||
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
return self.resblocks(x)
|
||||
|
||||
|
||||
class VisualTransformer(nn.Module):
|
||||
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
||||
super().__init__()
|
||||
self.input_resolution = input_resolution
|
||||
self.output_dim = output_dim
|
||||
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
||||
|
||||
scale = width ** -0.5
|
||||
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
||||
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
||||
self.ln_pre = LayerNorm(width)
|
||||
|
||||
self.transformer = Transformer(width, layers, heads)
|
||||
|
||||
self.ln_post = LayerNorm(width)
|
||||
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.conv1(x) # shape = [*, width, grid, grid]
|
||||
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
||||
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
||||
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
||||
x = x + self.positional_embedding.to(x.dtype)
|
||||
x = self.ln_pre(x)
|
||||
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer(x)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
|
||||
x = self.ln_post(x[:, 0, :])
|
||||
|
||||
if self.proj is not None:
|
||||
x = x @ self.proj
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class CLIP(nn.Module):
|
||||
def __init__(self,
|
||||
embed_dim: int,
|
||||
# vision
|
||||
image_resolution: int,
|
||||
vision_layers: Union[Tuple[int, int, int, int], int],
|
||||
vision_width: int,
|
||||
vision_patch_size: int,
|
||||
# text
|
||||
context_length: int,
|
||||
vocab_size: int,
|
||||
transformer_width: int,
|
||||
transformer_heads: int,
|
||||
transformer_layers: int
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.context_length = context_length
|
||||
|
||||
if isinstance(vision_layers, (tuple, list)):
|
||||
vision_heads = vision_width * 32 // 64
|
||||
self.visual = ModifiedResNet(
|
||||
layers=vision_layers,
|
||||
output_dim=embed_dim,
|
||||
heads=vision_heads,
|
||||
input_resolution=image_resolution,
|
||||
width=vision_width
|
||||
)
|
||||
else:
|
||||
vision_heads = vision_width // 64
|
||||
self.visual = VisualTransformer(
|
||||
input_resolution=image_resolution,
|
||||
patch_size=vision_patch_size,
|
||||
width=vision_width,
|
||||
layers=vision_layers,
|
||||
heads=vision_heads,
|
||||
output_dim=embed_dim
|
||||
)
|
||||
|
||||
self.transformer = Transformer(
|
||||
width=transformer_width,
|
||||
layers=transformer_layers,
|
||||
heads=transformer_heads,
|
||||
attn_mask=self.build_attention_mask()
|
||||
)
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
||||
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
||||
self.ln_final = LayerNorm(transformer_width)
|
||||
|
||||
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
||||
self.logit_scale = nn.Parameter(torch.ones([]))
|
||||
|
||||
def build_attention_mask(self):
|
||||
# lazily create causal attention mask, with full attention between the vision tokens
|
||||
# pytorch uses additive attention mask; fill with -inf
|
||||
mask = torch.empty(self.context_length, self.context_length)
|
||||
mask.fill_(float("-inf"))
|
||||
mask.triu_(1) # zero out the lower diagonal
|
||||
return mask
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self.visual.conv1.weight.dtype
|
||||
|
||||
def encode_image(self, image):
|
||||
return self.visual(image.type(self.dtype))
|
||||
|
||||
def encode_text(self, text):
|
||||
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
||||
|
||||
x = x + self.positional_embedding.type(self.dtype)
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer(x)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
x = self.ln_final(x).type(self.dtype)
|
||||
|
||||
# x.shape = [batch_size, n_ctx, transformer.width]
|
||||
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
||||
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, image, text):
|
||||
image_features = self.encode_image(image)
|
||||
text_features = self.encode_text(text)
|
||||
|
||||
# normalized features
|
||||
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
||||
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
# cosine similarity as logits
|
||||
logit_scale = self.logit_scale.exp()
|
||||
logits_per_image = logit_scale * image_features @ text_features.t()
|
||||
logits_per_text = logit_scale * text_features @ image_features.t()
|
||||
|
||||
# shape = [global_batch_size, global_batch_size]
|
||||
return logits_per_image, logits_per_text
|
||||
|
||||
|
||||
def convert_weights(model: nn.Module):
|
||||
"""Convert applicable model parameters to fp16"""
|
||||
|
||||
def _convert_weights_to_fp16(l):
|
||||
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
||||
l.weight.data = l.weight.data.half()
|
||||
if l.bias is not None:
|
||||
l.bias.data = l.bias.data.half()
|
||||
|
||||
if isinstance(l, nn.MultiheadAttention):
|
||||
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
||||
tensor = getattr(l, attr)
|
||||
if tensor is not None:
|
||||
tensor.data = tensor.data.half()
|
||||
|
||||
for name in ["text_projection", "proj"]:
|
||||
if hasattr(l, name):
|
||||
attr = getattr(l, name)
|
||||
if attr is not None:
|
||||
attr.data = attr.data.half()
|
||||
|
||||
model.apply(_convert_weights_to_fp16)
|
||||
|
||||
|
||||
def build_model(state_dict: dict):
|
||||
vit = "visual.proj" in state_dict
|
||||
|
||||
if vit:
|
||||
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
||||
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
||||
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
||||
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
||||
image_resolution = vision_patch_size * grid_size
|
||||
else:
|
||||
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
||||
vision_layers = tuple(counts)
|
||||
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
||||
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
||||
vision_patch_size = None
|
||||
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
||||
image_resolution = output_width * 32
|
||||
|
||||
embed_dim = state_dict["text_projection"].shape[1]
|
||||
context_length = state_dict["positional_embedding"].shape[0]
|
||||
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
||||
transformer_width = state_dict["ln_final.weight"].shape[0]
|
||||
transformer_heads = transformer_width // 64
|
||||
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
||||
|
||||
model = CLIP(
|
||||
embed_dim,
|
||||
image_resolution, vision_layers, vision_width, vision_patch_size,
|
||||
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
||||
)
|
||||
|
||||
for key in ["input_resolution", "context_length", "vocab_size"]:
|
||||
del state_dict[key]
|
||||
|
||||
convert_weights(model)
|
||||
model.load_state_dict(state_dict)
|
||||
return model.eval()
|
132
clip/simple_tokenizer.py
Normal file
132
clip/simple_tokenizer.py
Normal file
@ -0,0 +1,132 @@
|
||||
import gzip
|
||||
import html
|
||||
import os
|
||||
from functools import lru_cache
|
||||
|
||||
import ftfy
|
||||
import regex as re
|
||||
|
||||
|
||||
@lru_cache()
|
||||
def default_bpe():
|
||||
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
||||
|
||||
|
||||
@lru_cache()
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8+n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
def get_pairs(word):
|
||||
"""Return set of symbol pairs in a word.
|
||||
Word is represented as tuple of symbols (symbols being variable-length strings).
|
||||
"""
|
||||
pairs = set()
|
||||
prev_char = word[0]
|
||||
for char in word[1:]:
|
||||
pairs.add((prev_char, char))
|
||||
prev_char = char
|
||||
return pairs
|
||||
|
||||
|
||||
def basic_clean(text):
|
||||
text = ftfy.fix_text(text)
|
||||
text = html.unescape(html.unescape(text))
|
||||
return text.strip()
|
||||
|
||||
|
||||
def whitespace_clean(text):
|
||||
text = re.sub(r'\s+', ' ', text)
|
||||
text = text.strip()
|
||||
return text
|
||||
|
||||
|
||||
class SimpleTokenizer(object):
|
||||
def __init__(self, bpe_path: str = default_bpe()):
|
||||
self.byte_encoder = bytes_to_unicode()
|
||||
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
||||
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
||||
merges = merges[1:49152-256-2+1]
|
||||
merges = [tuple(merge.split()) for merge in merges]
|
||||
vocab = list(bytes_to_unicode().values())
|
||||
vocab = vocab + [v+'</w>' for v in vocab]
|
||||
for merge in merges:
|
||||
vocab.append(''.join(merge))
|
||||
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
||||
self.encoder = dict(zip(vocab, range(len(vocab))))
|
||||
self.decoder = {v: k for k, v in self.encoder.items()}
|
||||
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
||||
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
||||
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
||||
|
||||
def bpe(self, token):
|
||||
if token in self.cache:
|
||||
return self.cache[token]
|
||||
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
||||
pairs = get_pairs(word)
|
||||
|
||||
if not pairs:
|
||||
return token+'</w>'
|
||||
|
||||
while True:
|
||||
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
||||
if bigram not in self.bpe_ranks:
|
||||
break
|
||||
first, second = bigram
|
||||
new_word = []
|
||||
i = 0
|
||||
while i < len(word):
|
||||
try:
|
||||
j = word.index(first, i)
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
except:
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
|
||||
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
||||
new_word.append(first+second)
|
||||
i += 2
|
||||
else:
|
||||
new_word.append(word[i])
|
||||
i += 1
|
||||
new_word = tuple(new_word)
|
||||
word = new_word
|
||||
if len(word) == 1:
|
||||
break
|
||||
else:
|
||||
pairs = get_pairs(word)
|
||||
word = ' '.join(word)
|
||||
self.cache[token] = word
|
||||
return word
|
||||
|
||||
def encode(self, text):
|
||||
bpe_tokens = []
|
||||
text = whitespace_clean(basic_clean(text)).lower()
|
||||
for token in re.findall(self.pat, text):
|
||||
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
||||
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
||||
return bpe_tokens
|
||||
|
||||
def decode(self, tokens):
|
||||
text = ''.join([self.decoder[token] for token in tokens])
|
||||
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
||||
return text
|
Reference in New Issue
Block a user