fix eurosat templates
This commit is contained in:
		@ -4,6 +4,8 @@ Below are the class names and templates that are used for collecting the zero-sh
 | 
			
		||||
 | 
			
		||||
This file contains prompt data for 26 of the 27 datasets shown in Table 9 of the paper; the text prompts for ImageNet (as well as other [ImageNet Testbed](https://modestyachts.github.io/imagenet-testbed/) datasets in Figure 13) can be found in [this notebook](https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb), as well as how to ensemble predictions from multiple prompts using these templates.
 | 
			
		||||
 | 
			
		||||
If you are viewing this document on GitHub, use the table of contents icon at the upper left to browse the datasets.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Birdsnap
 | 
			
		||||
 | 
			
		||||
@ -1156,16 +1158,16 @@ templates = [
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
classes = [
 | 
			
		||||
    'AnnualCrop'
 | 
			
		||||
    'Forest'
 | 
			
		||||
    'HerbaceousVegetation'
 | 
			
		||||
    'Highway'
 | 
			
		||||
    'Industrial'
 | 
			
		||||
    'Pasture'
 | 
			
		||||
    'PermanentCrop'
 | 
			
		||||
    'Residential'
 | 
			
		||||
    'River'
 | 
			
		||||
    'SeaLake'
 | 
			
		||||
    'forest'
 | 
			
		||||
    'permanent crop land'
 | 
			
		||||
    'residential buildings or homes or apartments'
 | 
			
		||||
    'river'
 | 
			
		||||
    'pasture land'
 | 
			
		||||
    'lake or sea'
 | 
			
		||||
    'brushland or shrubland'
 | 
			
		||||
    'annual crop land'
 | 
			
		||||
    'industrial buildings or commercial buildings'
 | 
			
		||||
    'highway or road'
 | 
			
		||||
],
 | 
			
		||||
 | 
			
		||||
templates = [
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user