define SBUS in config

This commit is contained in:
2026-02-14 21:58:39 +01:00
parent 4ccfc5128b
commit 40d2880fdc
6 changed files with 259 additions and 183 deletions

View File

@ -93,11 +93,21 @@ GND -> Common Ground
- Add 100-500µF capacitor near strips - Add 100-500µF capacitor near strips
- Add 330Ω resistor on data line - Add 330Ω resistor on data line
### PWM Signal
### PWM Signal Mode
- Standard RC PWM: 1000-2000µs pulse width - Standard RC PWM: 1000-2000µs pulse width
- 1500µs threshold for mode switching - 1500µs threshold for mode switching
- Rising edge >1500µs after <1500µs triggers next mode - Rising edge >1500µs after <1500µs triggers next mode
### SBUS Mode (FrSky X4R-SB)
```
X4R-SB SBUS/CH4 → ESP32 UART1 RX Pin (configured GPIO)
```
**Note**: The FrSky X4R-SB outputs inverted SBUS. The module automatically handles this inversion.
## Development ## Development
### Adding New Animations ### Adding New Animations
@ -118,6 +128,23 @@ idf.py monitor
# Exit monitor: Ctrl+] # Exit monitor: Ctrl+]
``` ```
#### Debug Output (SBUS Mode Only)
```c
// Print all 16 channels to console
rcsignal_debug_print_channels();
```
Example output:
```
I (12345) RCSIGNAL: SBUS Channels:
I (12345) RCSIGNAL: CH1: 992 CH2: 992 CH3: 172 CH4: 1811
I (12345) RCSIGNAL: CH5: 992 CH6: 992 CH7: 992 CH8: 992
I (12345) RCSIGNAL: CH9: 992 CH10: 992 CH11: 992 CH12: 992
I (12345) RCSIGNAL: CH13: 992 CH14: 992 CH15: 992 CH16: 992
I (12345) RCSIGNAL: Trigger channel (CH4): 1811
```
## License ## License
See [LICENSE](LICENSE) See [LICENSE](LICENSE)

View File

@ -26,7 +26,11 @@ static const char *TAG = "CONFIG";
#define HARDCODED_CONFIG_LED_STRIP_B_PIN 3U #define HARDCODED_CONFIG_LED_STRIP_B_PIN 3U
#define HARDCODED_CONFIG_LED_STRIP_A_COUNT 9U #define HARDCODED_CONFIG_LED_STRIP_A_COUNT 9U
#define HARDCODED_CONFIG_LED_STRIP_B_COUNT 9U #define HARDCODED_CONFIG_LED_STRIP_B_COUNT 9U
#define HARDCODED_CONFIG_PWM_PIN 1U #define HARDCODED_CONFIG_RC_SIGNAL_PIN 1U
#define HARDCODED_CONFIG_USE_SBUS_MODE true
#define HARDCODED_CONFIG_SBUS_TRIGGER_CHANNEL 3U // Channel 4
#define HARDCODED_CONFIG_SBUS_THRESHOLD_LOW 800U
#define HARDCODED_CONFIG_SBUS_THRESHOLD_HIGH 1100U
#if defined(CONFIG_IDF_TARGET_ESP32C3) #if defined(CONFIG_IDF_TARGET_ESP32C3)
#define HARDCODED_CONFIG_LOCALBTN_PIN 9 #define HARDCODED_CONFIG_LOCALBTN_PIN 9
@ -44,8 +48,13 @@ static config_t current_config = {
.led_pin_strip_b = -1, .led_pin_strip_b = -1,
.led_count_strip_a = -1, .led_count_strip_a = -1,
.led_count_strip_b = -1, .led_count_strip_b = -1,
.pwm_pin = -1, .rc_signal_pin = -1,
.localBtn_pin = -1}; .localBtn_pin = -1,
.use_sbus_mode = false,
.sbus_trigger_channel = 3,
.sbus_threshold_low = 800,
.sbus_threshold_high = 1100,
};
static void calculate_config_hash(const config_t *cfg, uint8_t *out_hash); static void calculate_config_hash(const config_t *cfg, uint8_t *out_hash);
@ -88,7 +97,13 @@ static esp_err_t load_config_from_nvs(void)
ESP_LOGI(TAG, " Strip B: GPIO%d", current_config.led_pin_strip_b); ESP_LOGI(TAG, " Strip B: GPIO%d", current_config.led_pin_strip_b);
ESP_LOGI(TAG, " Strip A LED count: %d", current_config.led_count_strip_a); ESP_LOGI(TAG, " Strip A LED count: %d", current_config.led_count_strip_a);
ESP_LOGI(TAG, " Strip B LED count: %d", current_config.led_count_strip_b); ESP_LOGI(TAG, " Strip B LED count: %d", current_config.led_count_strip_b);
ESP_LOGI(TAG, " PWM Pin: GPIO%d", current_config.pwm_pin); ESP_LOGI(TAG, " RC Signal Pin: GPIO%d", current_config.rc_signal_pin);
ESP_LOGI(TAG, " RC Signal Mode: %s", current_config.use_sbus_mode ? "SBUS" : "PWM");
if (current_config.use_sbus_mode)
{
ESP_LOGI(TAG, " SBUS Trigger Channel: %d", current_config.sbus_trigger_channel + 1);
ESP_LOGI(TAG, " SBUS Thresholds: %d / %d", current_config.sbus_threshold_low, current_config.sbus_threshold_high);
}
ESP_LOGI(TAG, " Local btn Pin: GPIO%d", current_config.localBtn_pin); ESP_LOGI(TAG, " Local btn Pin: GPIO%d", current_config.localBtn_pin);
return ESP_OK; return ESP_OK;
@ -131,8 +146,12 @@ esp_err_t config_reset_config(void)
current_config.led_pin_strip_b = -1; current_config.led_pin_strip_b = -1;
current_config.led_count_strip_a = -1; current_config.led_count_strip_a = -1;
current_config.led_count_strip_b = -1; current_config.led_count_strip_b = -1;
current_config.pwm_pin = -1; current_config.rc_signal_pin = -1;
current_config.localBtn_pin = -1; current_config.localBtn_pin = -1;
current_config.use_sbus_mode = false;
current_config.sbus_trigger_channel = 3;
current_config.sbus_threshold_low = 800;
current_config.sbus_threshold_high = 1100;
return save_config_to_nvs(); return save_config_to_nvs();
} }
@ -143,8 +162,12 @@ void config_get_config(config_t *const cnf)
cnf->led_pin_strip_b = current_config.led_pin_strip_b; cnf->led_pin_strip_b = current_config.led_pin_strip_b;
cnf->led_count_strip_a = current_config.led_count_strip_a; cnf->led_count_strip_a = current_config.led_count_strip_a;
cnf->led_count_strip_b = current_config.led_count_strip_b; cnf->led_count_strip_b = current_config.led_count_strip_b;
cnf->pwm_pin = current_config.pwm_pin; cnf->rc_signal_pin = current_config.rc_signal_pin;
cnf->localBtn_pin = current_config.localBtn_pin; cnf->localBtn_pin = current_config.localBtn_pin;
cnf->use_sbus_mode = current_config.use_sbus_mode;
cnf->sbus_trigger_channel = current_config.sbus_trigger_channel;
cnf->sbus_threshold_low = current_config.sbus_threshold_low;
cnf->sbus_threshold_high = current_config.sbus_threshold_high;
} }
esp_err_t config_init(void) esp_err_t config_init(void)
@ -168,8 +191,12 @@ esp_err_t config_init(void)
current_config.led_pin_strip_b = HARDCODED_CONFIG_LED_STRIP_B_PIN; current_config.led_pin_strip_b = HARDCODED_CONFIG_LED_STRIP_B_PIN;
current_config.led_count_strip_a = HARDCODED_CONFIG_LED_STRIP_A_COUNT; current_config.led_count_strip_a = HARDCODED_CONFIG_LED_STRIP_A_COUNT;
current_config.led_count_strip_b = HARDCODED_CONFIG_LED_STRIP_B_COUNT; current_config.led_count_strip_b = HARDCODED_CONFIG_LED_STRIP_B_COUNT;
current_config.pwm_pin = HARDCODED_CONFIG_PWM_PIN; current_config.rc_signal_pin = HARDCODED_CONFIG_RC_SIGNAL_PIN;
current_config.localBtn_pin = HARDCODED_CONFIG_LOCALBTN_PIN; current_config.localBtn_pin = HARDCODED_CONFIG_LOCALBTN_PIN;
current_config.use_sbus_mode = HARDCODED_CONFIG_USE_SBUS_MODE;
current_config.sbus_trigger_channel = HARDCODED_CONFIG_SBUS_TRIGGER_CHANNEL;
current_config.sbus_threshold_low = HARDCODED_CONFIG_SBUS_THRESHOLD_LOW;
current_config.sbus_threshold_high = HARDCODED_CONFIG_SBUS_THRESHOLD_HIGH;
save_config_to_nvs(); save_config_to_nvs();
#endif #endif

View File

@ -17,12 +17,19 @@
*/ */
typedef struct typedef struct
{ {
int8_t led_pin_strip_a; // GPIO pin for LED strip A (-1 = not configured) int8_t led_pin_strip_a; // GPIO pin for LED strip A (-1 = not configured)
int8_t led_pin_strip_b; // GPIO pin for LED strip B (-1 = not configured) int8_t led_pin_strip_b; // GPIO pin for LED strip B (-1 = not configured)
int8_t led_count_strip_a; // LED count for LED strip A (-1 = not configured) int8_t led_count_strip_a; // LED count for LED strip A (-1 = not configured)
int8_t led_count_strip_b; // LED count for LED strip B (-1 = not configured) int8_t led_count_strip_b; // LED count for LED strip B (-1 = not configured)
int8_t pwm_pin; // GPIO pin for PWM input (-1 = not configured) int8_t rc_signal_pin; // GPIO pin for RC signal input (-1 = not configured)
int8_t localBtn_pin; // GPIO pin for local btn input (-1 = not configured) int8_t localBtn_pin; // GPIO pin for local btn input (-1 = not configured)
// RC Signal mode settings
bool use_sbus_mode; // true = SBUS mode, false = PWM mode
uint8_t sbus_trigger_channel; // SBUS channel for mode trigger (0-15, typically 3 for CH4)
uint16_t sbus_threshold_low; // SBUS low threshold (default 800)
uint16_t sbus_threshold_high; // SBUS high threshold (default 1100)
uint8_t hash[CONFIG_HASH_LEN]; // SHA256 Hash of config uint8_t hash[CONFIG_HASH_LEN]; // SHA256 Hash of config
} config_t; } config_t;

View File

@ -69,7 +69,7 @@ esp_err_t control_init(void)
ESP_ERROR_CHECK(gpio_install_isr_service(0)); ESP_ERROR_CHECK(gpio_install_isr_service(0));
// Initialize RC signal // Initialize RC signal
ret = rcsignal_init(current_config.pwm_pin); ret = rcsignal_init(&current_config);
if (ret != ESP_OK) if (ret != ESP_OK)
{ {
ESP_LOGE(TAG, "RC signal init failed: %s", esp_err_to_name(ret)); ESP_LOGE(TAG, "RC signal init failed: %s", esp_err_to_name(ret));

View File

@ -1,25 +1,22 @@
/** /**
* @file rcsignal.c * @file rcsignal.c
* @brief RC PWM signal reading implementation using edge capture * @brief RC PWM/SBUS signal reading implementation with runtime mode selection
*/ */
#include "rcsignal.h" #include "rcsignal.h"
#include "config.h"
#include "driver/gpio.h" #include "driver/gpio.h"
#include "driver/uart.h"
#include "esp_timer.h" #include "esp_timer.h"
#include "esp_log.h" #include "esp_log.h"
#include "freertos/FreeRTOS.h" #include "freertos/FreeRTOS.h"
#include "freertos/task.h" #include "freertos/task.h"
#ifdef USE_SBUS_MODE
#include "driver/uart.h"
#endif
#include <string.h> #include <string.h>
static const char *TAG = "RCSIGNAL"; static const char *TAG = "RCSIGNAL";
#ifdef USE_SBUS_MODE
// SBUS protocol constants // SBUS protocol constants
#define SBUS_FRAME_SIZE 25 #define SBUS_FRAME_SIZE 25
#define SBUS_HEADER 0x0F #define SBUS_HEADER 0x0F
@ -29,59 +26,59 @@ static const char *TAG = "RCSIGNAL";
#define SBUS_CH_MIN 172 #define SBUS_CH_MIN 172
#define SBUS_CH_CENTER 992 #define SBUS_CH_CENTER 992
#define SBUS_CH_MAX 1811 #define SBUS_CH_MAX 1811
#define SBUS_THRESHOLD_LOW 800
#define SBUS_THRESHOLD_HIGH 1100
#define UART_NUM UART_NUM_1 #define UART_NUM UART_NUM_1
#define UART_BUF_SIZE 256 #define UART_BUF_SIZE 256
#else
// PWM mode constants // PWM mode constants
#define PULSE_THRESHOLD_US 1500 #define PULSE_THRESHOLD_US 1500
#define SIGNAL_TIMEOUT_MS 100 #define SIGNAL_TIMEOUT_MS 100
#endif
static struct static struct
{ {
int8_t gpio_pin; int8_t gpio_pin;
#ifdef USE_SBUS_MODE bool use_sbus_mode; // Runtime mode selection
uint8_t sbus_trigger_channel; // SBUS trigger channel
uint16_t sbus_threshold_low; // SBUS low threshold
uint16_t sbus_threshold_high; // SBUS high threshold
// SBUS state
volatile uint16_t channels[SBUS_NUM_CHANNELS]; volatile uint16_t channels[SBUS_NUM_CHANNELS];
volatile int64_t last_frame_time; volatile int64_t last_frame_time;
volatile bool signal_active;
volatile bool pull_detected;
uint8_t rx_buffer[SBUS_FRAME_SIZE]; uint8_t rx_buffer[SBUS_FRAME_SIZE];
#else
// PWM state
volatile uint32_t pulse_width_us; volatile uint32_t pulse_width_us;
volatile int64_t last_edge_time; volatile int64_t last_edge_time;
volatile int64_t pulse_start_time; volatile int64_t pulse_start_time;
volatile bool last_level; volatile bool last_level;
// Common state
volatile bool signal_active; volatile bool signal_active;
volatile bool pull_detected; volatile bool pull_detected;
#endif
uint8_t current_mode; uint8_t current_mode;
rcsignal_mode_change_callback_t callback; rcsignal_mode_change_callback_t callback;
bool initialized; bool initialized;
TaskHandle_t monitor_task; TaskHandle_t monitor_task;
} rcsignal = { } rcsignal = {
.gpio_pin = -1, .gpio_pin = -1,
#ifdef USE_SBUS_MODE .use_sbus_mode = false,
.sbus_trigger_channel = 3,
.sbus_threshold_low = 800,
.sbus_threshold_high = 1100,
.channels = {0}, .channels = {0},
.last_frame_time = 0, .last_frame_time = 0,
.signal_active = false,
.pull_detected = false,
.rx_buffer = {0}, .rx_buffer = {0},
#else
.pulse_width_us = 0, .pulse_width_us = 0,
.last_edge_time = 0, .last_edge_time = 0,
.pulse_start_time = 0, .pulse_start_time = 0,
.last_level = false, .last_level = false,
.signal_active = false, .signal_active = false,
.pull_detected = false, .pull_detected = false,
#endif
.current_mode = 0, .current_mode = 0,
.callback = NULL, .callback = NULL,
.initialized = false, .initialized = false,
.monitor_task = NULL, .monitor_task = NULL,
}; };
#ifndef USE_SBUS_MODE
// PWM Mode: GPIO ISR handler // PWM Mode: GPIO ISR handler
static void IRAM_ATTR gpio_isr_handler(void *arg) static void IRAM_ATTR gpio_isr_handler(void *arg)
{ {
@ -106,7 +103,7 @@ static void IRAM_ATTR gpio_isr_handler(void *arg)
rcsignal.last_level = level; rcsignal.last_level = level;
} }
#else
// SBUS Mode: Parse SBUS frame // SBUS Mode: Parse SBUS frame
static bool parse_sbus_frame(const uint8_t *frame, uint16_t *channels) static bool parse_sbus_frame(const uint8_t *frame, uint16_t *channels)
{ {
@ -136,43 +133,95 @@ static bool parse_sbus_frame(const uint8_t *frame, uint16_t *channels)
return true; return true;
} }
#endif
static void monitor_task(void *arg) static void monitor_task(void *arg)
{ {
#ifdef USE_SBUS_MODE if (rcsignal.use_sbus_mode)
while (1)
{ {
// Read SBUS data from UART // SBUS mode
int len = uart_read_bytes(UART_NUM, rcsignal.rx_buffer, SBUS_FRAME_SIZE, pdMS_TO_TICKS(20)); while (1)
if (len == SBUS_FRAME_SIZE)
{ {
uint16_t temp_channels[SBUS_NUM_CHANNELS]; // Read SBUS data from UART
int len = uart_read_bytes(UART_NUM, rcsignal.rx_buffer, SBUS_FRAME_SIZE, pdMS_TO_TICKS(20));
if (parse_sbus_frame(rcsignal.rx_buffer, temp_channels)) if (len == SBUS_FRAME_SIZE)
{ {
// Copy parsed channels uint16_t temp_channels[SBUS_NUM_CHANNELS];
for (int i = 0; i < SBUS_NUM_CHANNELS; i++)
if (parse_sbus_frame(rcsignal.rx_buffer, temp_channels))
{ {
rcsignal.channels[i] = temp_channels[i]; // Copy parsed channels
for (int i = 0; i < SBUS_NUM_CHANNELS; i++)
{
rcsignal.channels[i] = temp_channels[i];
}
rcsignal.last_frame_time = esp_timer_get_time();
rcsignal.signal_active = true;
// Check trigger channel for mode change
uint16_t ch_value = rcsignal.channels[rcsignal.sbus_trigger_channel];
// Detect pull low
if (ch_value < rcsignal.sbus_threshold_low)
{
rcsignal.pull_detected = true;
}
// Detect rising edge (pull high after low)
if (ch_value > rcsignal.sbus_threshold_high && rcsignal.pull_detected)
{
rcsignal.pull_detected = false;
if (rcsignal.callback)
{
rcsignal.callback();
}
}
} }
}
rcsignal.last_frame_time = esp_timer_get_time(); // Check for signal timeout
rcsignal.signal_active = true; int64_t now = esp_timer_get_time();
if (rcsignal.signal_active && (now - rcsignal.last_frame_time) > (SIGNAL_TIMEOUT_MS * 1000))
{
rcsignal.signal_active = false;
memset((void *)rcsignal.channels, 0, sizeof(rcsignal.channels));
}
// Check channel 4 for mode trigger vTaskDelay(pdMS_TO_TICKS(5));
uint16_t ch4_value = rcsignal.channels[SBUS_TRIGGER_CHANNEL]; }
}
else
{
// PWM mode
uint32_t last_pulse_width = 0;
// Detect pull low while (1)
if (ch4_value < SBUS_THRESHOLD_LOW) {
vTaskDelay(pdMS_TO_TICKS(10));
// Check for signal timeout
int64_t now = esp_timer_get_time();
if (rcsignal.signal_active && (now - rcsignal.last_edge_time) > (SIGNAL_TIMEOUT_MS * 1000))
{
rcsignal.signal_active = false;
rcsignal.pulse_width_us = 0;
}
// Detect mode change (rising edge on PWM signal > 1500us)
if (rcsignal.pulse_width_us != last_pulse_width)
{
last_pulse_width = rcsignal.pulse_width_us;
if (rcsignal.pulse_width_us < PULSE_THRESHOLD_US)
{ {
rcsignal.pull_detected = true; rcsignal.pull_detected = true;
} }
// Detect rising edge (pull high after low) if (rcsignal.pulse_width_us > PULSE_THRESHOLD_US && rcsignal.pull_detected)
if (ch4_value > SBUS_THRESHOLD_HIGH && rcsignal.pull_detected)
{ {
// Mode change detected
rcsignal.pull_detected = false; rcsignal.pull_detected = false;
if (rcsignal.callback) if (rcsignal.callback)
@ -182,116 +231,79 @@ static void monitor_task(void *arg)
} }
} }
} }
// Check for signal timeout
int64_t now = esp_timer_get_time();
if (rcsignal.signal_active && (now - rcsignal.last_frame_time) > (100 * 1000))
{
rcsignal.signal_active = false;
memset((void *)rcsignal.channels, 0, sizeof(rcsignal.channels));
}
vTaskDelay(pdMS_TO_TICKS(5));
} }
#else
// PWM mode
uint32_t last_pulse_width = 0;
while (1)
{
vTaskDelay(pdMS_TO_TICKS(10));
// Check for signal timeout
int64_t now = esp_timer_get_time();
if (rcsignal.signal_active && (now - rcsignal.last_edge_time) > (SIGNAL_TIMEOUT_MS * 1000))
{
rcsignal.signal_active = false;
rcsignal.pulse_width_us = 0;
}
// Detect mode change (rising edge on PWM signal > 1500us)
if (rcsignal.pulse_width_us != last_pulse_width)
{
last_pulse_width = rcsignal.pulse_width_us;
if (rcsignal.pulse_width_us < PULSE_THRESHOLD_US)
{
rcsignal.pull_detected = true;
}
if (rcsignal.pulse_width_us > PULSE_THRESHOLD_US && rcsignal.pull_detected)
{
// Mode change detected
rcsignal.pull_detected = false;
if (rcsignal.callback)
{
rcsignal.callback();
}
}
}
}
#endif
} }
esp_err_t rcsignal_init(int8_t pin) esp_err_t rcsignal_init(const config_t *config)
{ {
if (pin < 0) if (!config || config->rc_signal_pin < 0)
{ {
ESP_LOGI(TAG, "RC signal disabled (no pin configured)"); ESP_LOGI(TAG, "RC signal disabled (no pin configured)");
return ESP_OK; return ESP_OK;
} }
rcsignal.gpio_pin = pin; // Store configuration
rcsignal.gpio_pin = config->rc_signal_pin;
rcsignal.use_sbus_mode = config->use_sbus_mode;
rcsignal.sbus_trigger_channel = config->sbus_trigger_channel;
rcsignal.sbus_threshold_low = config->sbus_threshold_low;
rcsignal.sbus_threshold_high = config->sbus_threshold_high;
#ifdef USE_SBUS_MODE if (rcsignal.use_sbus_mode)
// SBUS Mode: Configure UART with inverted RX {
ESP_LOGI(TAG, "Initializing SBUS mode on GPIO%d", pin); // SBUS Mode: Configure UART with inverted RX
ESP_LOGI(TAG, "Initializing SBUS mode on GPIO%d", rcsignal.gpio_pin);
ESP_LOGI(TAG, " Trigger channel: CH%d", rcsignal.sbus_trigger_channel + 1);
ESP_LOGI(TAG, " Thresholds: %d / %d", rcsignal.sbus_threshold_low, rcsignal.sbus_threshold_high);
uart_config_t uart_config = { uart_config_t uart_config = {
.baud_rate = SBUS_BAUDRATE, .baud_rate = SBUS_BAUDRATE,
.data_bits = UART_DATA_8_BITS, .data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_EVEN, .parity = UART_PARITY_EVEN,
.stop_bits = UART_STOP_BITS_2, .stop_bits = UART_STOP_BITS_2,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.source_clk = UART_SCLK_APB, .source_clk = UART_SCLK_APB,
}; };
ESP_ERROR_CHECK(uart_param_config(UART_NUM, &uart_config)); ESP_ERROR_CHECK(uart_param_config(UART_NUM, &uart_config));
ESP_ERROR_CHECK(uart_set_pin(UART_NUM, UART_PIN_NO_CHANGE, pin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE)); ESP_ERROR_CHECK(uart_set_pin(UART_NUM, UART_PIN_NO_CHANGE, rcsignal.gpio_pin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
ESP_ERROR_CHECK(uart_driver_install(UART_NUM, UART_BUF_SIZE * 2, 0, 0, NULL, 0)); ESP_ERROR_CHECK(uart_driver_install(UART_NUM, UART_BUF_SIZE * 2, 0, 0, NULL, 0));
// Set inverted RX for FrSky receivers (they output inverted SBUS) // Set inverted RX for FrSky receivers (they output inverted SBUS)
ESP_ERROR_CHECK(uart_set_line_inverse(UART_NUM, UART_SIGNAL_RXD_INV)); ESP_ERROR_CHECK(uart_set_line_inverse(UART_NUM, UART_SIGNAL_RXD_INV));
ESP_LOGI(TAG, "SBUS UART configured with inverted RX"); ESP_LOGI(TAG, "SBUS UART configured with inverted RX");
#else }
// PWM Mode: Configure GPIO with interrupts else
ESP_LOGI(TAG, "Initializing PWM mode on GPIO%d", pin); {
// PWM Mode: Configure GPIO with interrupts
ESP_LOGI(TAG, "Initializing PWM mode on GPIO%d", rcsignal.gpio_pin);
gpio_config_t io_conf = { gpio_config_t io_conf = {
.pin_bit_mask = (1ULL << pin), .pin_bit_mask = (1ULL << rcsignal.gpio_pin),
.mode = GPIO_MODE_INPUT, .mode = GPIO_MODE_INPUT,
.pull_up_en = GPIO_PULLUP_ENABLE, .pull_up_en = GPIO_PULLUP_ENABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_ANYEDGE, .intr_type = GPIO_INTR_ANYEDGE,
}; };
ESP_ERROR_CHECK(gpio_config(&io_conf)); ESP_ERROR_CHECK(gpio_config(&io_conf));
// Install ISR service // Add ISR handler (ISR service must be installed by caller)
ESP_ERROR_CHECK(gpio_isr_handler_add(pin, gpio_isr_handler, NULL)); ESP_ERROR_CHECK(gpio_isr_handler_add(rcsignal.gpio_pin, gpio_isr_handler, NULL));
#endif }
// Create monitor task // Create monitor task
BaseType_t ret = xTaskCreate(monitor_task, "rcsignal_monitor", 2048, NULL, 5, &rcsignal.monitor_task); BaseType_t ret = xTaskCreate(monitor_task, "rcsignal_monitor", 2048, NULL, 5, &rcsignal.monitor_task);
if (ret != pdPASS) if (ret != pdPASS)
{ {
#ifdef USE_SBUS_MODE if (rcsignal.use_sbus_mode)
uart_driver_delete(UART_NUM); {
#else uart_driver_delete(UART_NUM);
gpio_isr_handler_remove(pin); }
gpio_uninstall_isr_service(); else
#endif {
gpio_isr_handler_remove(rcsignal.gpio_pin);
}
return ESP_FAIL; return ESP_FAIL;
} }
@ -312,14 +324,17 @@ void rcsignal_deinit(void)
rcsignal.monitor_task = NULL; rcsignal.monitor_task = NULL;
} }
#ifdef USE_SBUS_MODE if (rcsignal.use_sbus_mode)
uart_driver_delete(UART_NUM);
#else
if (rcsignal.gpio_pin >= 0)
{ {
gpio_isr_handler_remove(rcsignal.gpio_pin); uart_driver_delete(UART_NUM);
}
else
{
if (rcsignal.gpio_pin >= 0)
{
gpio_isr_handler_remove(rcsignal.gpio_pin);
}
} }
#endif
rcsignal.initialized = false; rcsignal.initialized = false;
} }
@ -331,18 +346,21 @@ void rcsignal_register_callback(rcsignal_mode_change_callback_t callback)
uint32_t rcsignal_get_pulse_width(void) uint32_t rcsignal_get_pulse_width(void)
{ {
#ifdef USE_SBUS_MODE if (rcsignal.use_sbus_mode)
// In SBUS mode, return channel 4 value mapped to microseconds
// SBUS: 172-1811 -> PWM: ~1000-2000us
if (rcsignal.signal_active)
{ {
uint16_t ch_val = rcsignal.channels[SBUS_TRIGGER_CHANNEL]; // In SBUS mode, return trigger channel value mapped to microseconds
return 1000 + ((ch_val - SBUS_CH_MIN) * 1000) / (SBUS_CH_MAX - SBUS_CH_MIN); // SBUS: 172-1811 -> PWM: ~1000-2000us
if (rcsignal.signal_active)
{
uint16_t ch_val = rcsignal.channels[rcsignal.sbus_trigger_channel];
return 1000 + ((ch_val - SBUS_CH_MIN) * 1000) / (SBUS_CH_MAX - SBUS_CH_MIN);
}
return 0;
}
else
{
return rcsignal.pulse_width_us;
} }
return 0;
#else
return rcsignal.pulse_width_us;
#endif
} }
bool rcsignal_is_active(void) bool rcsignal_is_active(void)
@ -355,10 +373,9 @@ uint8_t rcsignal_get_current_mode(void)
return rcsignal.current_mode; return rcsignal.current_mode;
} }
#ifdef USE_SBUS_MODE
uint16_t rcsignal_get_sbus_channel(uint8_t channel) uint16_t rcsignal_get_sbus_channel(uint8_t channel)
{ {
if (channel >= SBUS_NUM_CHANNELS) if (!rcsignal.use_sbus_mode || channel >= SBUS_NUM_CHANNELS)
{ {
return 0; return 0;
} }
@ -367,6 +384,12 @@ uint16_t rcsignal_get_sbus_channel(uint8_t channel)
void rcsignal_debug_print_channels(void) void rcsignal_debug_print_channels(void)
{ {
if (!rcsignal.use_sbus_mode)
{
ESP_LOGW(TAG, "Not in SBUS mode");
return;
}
if (!rcsignal.signal_active) if (!rcsignal.signal_active)
{ {
ESP_LOGW(TAG, "No SBUS signal active"); ESP_LOGW(TAG, "No SBUS signal active");
@ -388,7 +411,6 @@ void rcsignal_debug_print_channels(void)
rcsignal.channels[14], rcsignal.channels[15]); rcsignal.channels[14], rcsignal.channels[15]);
// Highlight the trigger channel // Highlight the trigger channel
ESP_LOGI(TAG, "Trigger channel (CH%d): %d", SBUS_TRIGGER_CHANNEL + 1, ESP_LOGI(TAG, "Trigger channel (CH%d): %d", rcsignal.sbus_trigger_channel + 1,
rcsignal.channels[SBUS_TRIGGER_CHANNEL]); rcsignal.channels[rcsignal.sbus_trigger_channel]);
} }
#endif

View File

@ -1,24 +1,19 @@
/** /**
* @file rcsignal.h * @file rcsignal.h
* @brief RC PWM signal reading and parsing module * @brief RC PWM/SBUS signal reading and parsing module
*/ */
#ifndef RCSIGNAL_H #ifndef RCSIGNAL_H
#define RCSIGNAL_H #define RCSIGNAL_H
#include "esp_err.h" #include "esp_err.h"
#include "config.h"
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
// Define to switch between PWM and SBUS mode // SBUS protocol constants (always defined for use in both modes)
// Comment out to use PWM mode, uncomment to use SBUS mode #define SBUS_NUM_CHANNELS 16 // SBUS supports 16 proportional channels
#define USE_SBUS_MODE
#ifdef USE_SBUS_MODE
#define SBUS_NUM_CHANNELS 16 // SBUS supports 16 proportional channels
#define SBUS_TRIGGER_CHANNEL 3 // Channel 4 (index 3) for mode trigger
#endif
/** /**
* @brief Callback function type for mode changes * @brief Callback function type for mode changes
@ -27,10 +22,10 @@ typedef void (*rcsignal_mode_change_callback_t)();
/** /**
* @brief Initialize RC signal reading * @brief Initialize RC signal reading
* @param pin GPIO pin for PWM input (-1 to disable) * @param config Pointer to configuration structure
* @return ESP_OK on success * @return ESP_OK on success
*/ */
esp_err_t rcsignal_init(int8_t pin); esp_err_t rcsignal_init(const config_t *config);
/** /**
* @brief Deinitialize RC signal reading * @brief Deinitialize RC signal reading
@ -61,18 +56,16 @@ bool rcsignal_is_active(void);
*/ */
uint8_t rcsignal_get_current_mode(void); uint8_t rcsignal_get_current_mode(void);
#ifdef USE_SBUS_MODE
/** /**
* @brief Get SBUS channel value * @brief Get SBUS channel value (only valid in SBUS mode)
* @param channel Channel index (0-15) * @param channel Channel index (0-15)
* @return Channel value (172-1811) or 0 if invalid * @return Channel value (172-1811) or 0 if invalid/not in SBUS mode
*/ */
uint16_t rcsignal_get_sbus_channel(uint8_t channel); uint16_t rcsignal_get_sbus_channel(uint8_t channel);
/** /**
* @brief Debug function to print all SBUS channels * @brief Debug function to print all SBUS channels (only valid in SBUS mode)
*/ */
void rcsignal_debug_print_channels(void); void rcsignal_debug_print_channels(void);
#endif
#endif // RCSIGNAL_H #endif // RCSIGNAL_H