safety state and input error detection

This commit is contained in:
2024-12-13 19:26:16 +01:00
parent a7f6973efd
commit 8205253b5a
6 changed files with 236 additions and 196 deletions

View File

@ -6,27 +6,8 @@
#include "inputs.h"
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MAX_DN18B20_SENSORS 4U
#define PERIODIC_INTERVAL 1U // read and compute the inputs every 1sec
#define AVG10_SAMPLE_SIZE 10U
#define AVG60_SAMPLE_SIZE 60U
typedef struct _Average
{
float value;
float samples[MAX(AVG10_SAMPLE_SIZE, AVG60_SAMPLE_SIZE)];
size_t bufferIndex;
size_t bufferCount;
} sAverage;
typedef struct _Measurement
{
float value;
sAverage average10s;
sAverage average60s;
} sMeasurement;
static const char *TAG = "smart-oil-heater-control-system-inputs";
const uint8_t uBurnerFaultPin = 19U;
@ -43,10 +24,10 @@ size_t sSensorCount = 0U;
static SemaphoreHandle_t xMutexAccessInputs = NULL;
static eBurnerErrorState sBurnerErrorState;
static sMeasurement fChamperTemperature;
static sMeasurement fOutdoorTemperature;
static sMeasurement fInletFlowTemperature;
static sMeasurement fReturnFlowTemperature;
static sMeasurement sChamperTemperature;
static sMeasurement sOutdoorTemperature;
static sMeasurement sInletFlowTemperature;
static sMeasurement sReturnFlowTemperature;
void taskInput(void *pvParameters);
void updateAverage(sMeasurement *pMeasurement);
@ -92,7 +73,7 @@ void initInputs(void)
void updateAverage(sMeasurement *pMeasurement)
{ /* Average form the last 10sec */
pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->value;
pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average10s.bufferIndex = (pMeasurement->average10s.bufferIndex + 1) % AVG10_SAMPLE_SIZE;
if (pMeasurement->average10s.bufferCount < AVG10_SAMPLE_SIZE)
@ -102,7 +83,7 @@ void updateAverage(sMeasurement *pMeasurement)
if (pMeasurement->average10s.bufferCount == 0U)
{
pMeasurement->average10s.value = pMeasurement->value;
pMeasurement->average10s.fValue = pMeasurement->fCurrentValue;
}
float sum = 0.0;
@ -111,10 +92,10 @@ void updateAverage(sMeasurement *pMeasurement)
sum += pMeasurement->average10s.samples[i];
}
pMeasurement->average10s.value = sum / pMeasurement->average10s.bufferCount;
pMeasurement->average10s.fValue = sum / pMeasurement->average10s.bufferCount;
/* Average form the last 60sec */
pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->value;
pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average60s.bufferIndex = (pMeasurement->average60s.bufferIndex + 1) % AVG60_SAMPLE_SIZE;
if (pMeasurement->average60s.bufferCount < AVG60_SAMPLE_SIZE)
@ -124,7 +105,7 @@ void updateAverage(sMeasurement *pMeasurement)
if (pMeasurement->average60s.bufferCount == 0U)
{
pMeasurement->average60s.value = pMeasurement->value;
pMeasurement->average60s.fValue = pMeasurement->fCurrentValue;
}
sum = 0.0;
@ -133,7 +114,7 @@ void updateAverage(sMeasurement *pMeasurement)
sum += pMeasurement->average60s.samples[i];
}
pMeasurement->average60s.value = sum / pMeasurement->average60s.bufferCount;
pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount;
}
void taskInput(void *pvParameters)
@ -141,168 +122,133 @@ void taskInput(void *pvParameters)
while (1)
{
vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS);
if (xSemaphoreTake(xMutexAccessInputs, portMAX_DELAY) == pdTRUE)
{
sChamperTemperature.state = MEASUREMENT_FAULT;
sOutdoorTemperature.state = MEASUREMENT_FAULT;
sInletFlowTemperature.state = MEASUREMENT_FAULT;
sReturnFlowTemperature.state = MEASUREMENT_FAULT;
if (gpio_get_level(uBurnerFaultPin) == 1)
{
sBurnerErrorState = FAULT;
}
else
{
sBurnerErrorState = NO_ERROR;
}
if (ds18x20_scan_devices(uDS18B20Pin, uOneWireAddresses, MAX_DN18B20_SENSORS, &sSensorCount) != ESP_OK)
{
ESP_LOGE(TAG, "1-Wire device scan error!");
}
if (!sSensorCount)
{
ESP_LOGW(TAG, "No 1-Wire devices detected!");
}
else
{
ESP_LOGI(TAG, "%d 1-Wire devices detected", sSensorCount);
if (sSensorCount > MAX_DN18B20_SENSORS)
if (gpio_get_level(uBurnerFaultPin) == 1)
{
sSensorCount = MAX_DN18B20_SENSORS;
ESP_LOGW(TAG, "More 1-Wire devices found than expected!");
}
if (ds18x20_measure_and_read_multi(uDS18B20Pin, uOneWireAddresses, sSensorCount, fDS18B20Temps) != ESP_OK)
{
ESP_LOGE(TAG, "1-Wire devices read error");
sBurnerErrorState = FAULT;
}
else
{
for (int j = 0; j < sSensorCount; j++)
sBurnerErrorState = NO_ERROR;
}
if (ds18x20_scan_devices(uDS18B20Pin, uOneWireAddresses, MAX_DN18B20_SENSORS, &sSensorCount) != ESP_OK)
{
ESP_LOGE(TAG, "1-Wire device scan error!");
}
if (!sSensorCount)
{
ESP_LOGW(TAG, "No 1-Wire devices detected!");
}
else
{
ESP_LOGI(TAG, "%d 1-Wire devices detected", sSensorCount);
if (sSensorCount > MAX_DN18B20_SENSORS)
{
float temp_c = fDS18B20Temps[j];
ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c);
if (xSemaphoreTake(xMutexAccessInputs, portMAX_DELAY) == pdTRUE)
sSensorCount = MAX_DN18B20_SENSORS;
ESP_LOGW(TAG, "More 1-Wire devices found than expected!");
}
if (ds18x20_measure_and_read_multi(uDS18B20Pin, uOneWireAddresses, sSensorCount, fDS18B20Temps) != ESP_OK)
{
ESP_LOGE(TAG, "1-Wire devices read error");
}
else
{
for (int j = 0; j < sSensorCount; j++)
{
float temp_c = fDS18B20Temps[j];
ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c);
switch ((uint64_t)uOneWireAddresses[j])
{
case ((uint64_t)uChamperTempSensorAddr):
fChamperTemperature.value = temp_c;
updateAverage(&fChamperTemperature);
sChamperTemperature.fCurrentValue = temp_c;
sChamperTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sChamperTemperature);
break;
case ((uint64_t)uOutdoorTempSensorAddr):
fOutdoorTemperature.value = temp_c;
updateAverage(&fOutdoorTemperature);
sOutdoorTemperature.fCurrentValue = temp_c;
sOutdoorTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sOutdoorTemperature);
break;
case ((uint64_t)uInletFlowTempSensorAddr):
fInletFlowTemperature.value = temp_c;
updateAverage(&fInletFlowTemperature);
sInletFlowTemperature.fCurrentValue = temp_c;
sInletFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sInletFlowTemperature);
break;
case ((uint64_t)uReturnFlowTempSensorAddr):
fReturnFlowTemperature.value = temp_c;
updateAverage(&fReturnFlowTemperature);
sReturnFlowTemperature.fCurrentValue = temp_c;
sReturnFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sReturnFlowTemperature);
break;
default:
break;
}
xSemaphoreGive(xMutexAccessInputs);
}
}
}
xSemaphoreGive(xMutexAccessInputs);
}
}
}
float getChamberTemperature(eMeasurementMode mode)
sMeasurement getChamberTemperature(void)
{
float ret = 0.0f;
sMeasurement ret;
ret.state = MEASUREMENT_FAULT;
if (xSemaphoreTake(xMutexAccessInputs, portMAX_DELAY) == pdTRUE)
{
switch (mode)
{
case CURRENT:
ret = fChamperTemperature.value;
break;
case AVERAGE_10S:
ret = fChamperTemperature.average10s.value;
break;
case AVERAGE_60S:
ret = fChamperTemperature.average60s.value;
break;
default:
break;
}
ret = sChamperTemperature;
xSemaphoreGive(xMutexAccessInputs);
}
return ret;
}
float getOutdoorTemperature(eMeasurementMode mode)
sMeasurement getOutdoorTemperature(void)
{
float ret = 0.0f;
sMeasurement ret;
ret.state = MEASUREMENT_FAULT;
if (xSemaphoreTake(xMutexAccessInputs, portMAX_DELAY) == pdTRUE)
{
switch (mode)
{
case CURRENT:
ret = fOutdoorTemperature.value;
break;
case AVERAGE_10S:
ret = fOutdoorTemperature.average10s.value;
break;
case AVERAGE_60S:
ret = fOutdoorTemperature.average60s.value;
break;
default:
break;
}
ret = sOutdoorTemperature;
xSemaphoreGive(xMutexAccessInputs);
}
return ret;
}
float getInletFlowTemperature(eMeasurementMode mode)
sMeasurement getInletFlowTemperature(void)
{
float ret = 0.0f;
sMeasurement ret;
ret.state = MEASUREMENT_FAULT;
if (xSemaphoreTake(xMutexAccessInputs, portMAX_DELAY) == pdTRUE)
{
switch (mode)
{
case CURRENT:
ret = fInletFlowTemperature.value;
break;
case AVERAGE_10S:
ret = fInletFlowTemperature.average10s.value;
break;
case AVERAGE_60S:
ret = fInletFlowTemperature.average60s.value;
break;
default:
break;
}
ret = sInletFlowTemperature;
xSemaphoreGive(xMutexAccessInputs);
}
return ret;
}
float getReturnFlowTemperature(eMeasurementMode mode)
sMeasurement getReturnFlowTemperature(void)
{
float ret = 0.0f;
sMeasurement ret;
ret.state = MEASUREMENT_FAULT;
if (xSemaphoreTake(xMutexAccessInputs, portMAX_DELAY) == pdTRUE)
{
switch (mode)
{
case CURRENT:
ret = fReturnFlowTemperature.value;
break;
case AVERAGE_10S:
ret = fReturnFlowTemperature.average10s.value;
break;
case AVERAGE_60S:
ret = fReturnFlowTemperature.average60s.value;
break;
default:
break;
}
ret = sReturnFlowTemperature;
xSemaphoreGive(xMutexAccessInputs);
}
return ret;
}
eBurnerErrorState getBurnerError(void)
{
eBurnerErrorState ret = FAULT;