1 Commits

Author SHA256 Message Date
d14ae528c0 silence error due to missing hardware 2025-02-17 21:18:48 +01:00
7 changed files with 149 additions and 231 deletions

View File

@ -8,35 +8,29 @@
#include "safety.h" #include "safety.h"
#include "sntp.h" #include "sntp.h"
#define PERIODIC_INTERVAL 1U // Run control loop every 1 second #define PERIODIC_INTERVAL 1U // run control loop every 1sec
// Temperature thresholds #define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0f #define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0f #define CHAMPER_TEMPERATURE_TARGET 80.0
#define CHAMBER_TEMPERATURE_TARGET 80.0f // Max cutoff temperature #define BURNER_FAULT_DETECTION_THRESHOLD (60U * 3U) // Detect burner fault if after 3 minutes no burner start detected
#define CHAMBER_TEMPERATURE_THRESHOLD 45.0f // Min threshold for burner enable
#define SUMMER_MODE_TEMPERATURE_THRESHOLD_HIGH 20.0f // Summer mode will be activated
#define SUMMER_MODE_TEMPERATURE_THRESHOLD_LOW 15.0f // Summer mode will be deactivated --> Heating starts
#define CIRCULATION_PUMP_TEMPERATURE_THRESHOLD 30.0f // Min threshold of chamber for circulation pump enable
#define BURNER_FAULT_DETECTION_THRESHOLD (60U * 4U) // Burner fault detection after 4 minutes
static const char *TAG = "smart-oil-heater-control-system-control"; static const char *TAG = "smart-oil-heater-control-system-control";
static eControlState sControlState = CONTROL_STARTING; static eControlState sControlState = CONTROL_STARTING;
// Control table for daily schedules
static const sControlDay aControlTable[] = {
{MONDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
{TUESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
{WEDNESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
{THURSDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
{FRIDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{23, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
{SATURDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{23, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
{SUNDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
};
static sControlTemperatureEntry currentControlEntry = aControlTable[0].aTemperatureEntries[0];
// Function prototypes static sControlDay aControlTable[] = {
{MONDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
{TUESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
{WEDNESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
{THURSDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
{FRIDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{23, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
{SATURDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{23, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
{SUNDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
};
void taskControl(void *pvParameters); void taskControl(void *pvParameters);
void findControlCurrentTemperatureEntry(void); eControlWeekday getCurrentWeekday(void);
sControlTemperatureEntry getCurrentTemperatureEntry(void);
void initControl(void) void initControl(void)
{ {
@ -62,71 +56,92 @@ void initControl(void)
void taskControl(void *pvParameters) void taskControl(void *pvParameters)
{ {
bool bHeatingInAction = false; bool bHeatingInAction = false;
bool bSummerMode = false; bool bBurnerFaultDetected = false;
eBurnerState eBurnerState = BURNER_UNKNOWN;
int64_t i64BurnerEnableTimestamp = esp_timer_get_time(); int64_t i64BurnerEnableTimestamp = esp_timer_get_time();
time_t now;
while (1) while (1)
{ {
// Get the current time
time(&now);
ESP_LOGW(TAG, "Control loop time: %lli", now);
vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS); vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS);
// Check for safety faults
if (getSafetyState() != SAFETY_NO_ERROR) if (getSafetyState() != SAFETY_NO_ERROR)
{ {
ESP_LOGW(TAG, "Control not possible due to safety fault!"); //ESP_LOGW(TAG, "Control not possible due to safety fault!");
sControlState = CONTROL_FAULT_SAFETY; sControlState = CONTROL_FAULT_SAFETY;
if (bHeatingInAction) if (bHeatingInAction == true)
{ {
ESP_LOGW(TAG, "Disabling burner due to safety fault"); ESP_LOGW(TAG, "Control not possible due to safety fault: Disable burner");
bHeatingInAction = false; bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED); setBurnerState(DISABLED);
setSafetyControlState(ENABLED); setSafetyControlState(ENABLED);
} }
continue; continue;
} }
// Check for SNTP faults
if (getSntpState() != SYNC_SUCCESSFUL) if (getSntpState() != SYNC_SUCCESSFUL)
{ {
ESP_LOGW(TAG, "Control not possible due to SNTP fault!"); ESP_LOGW(TAG, "Control not possible due to sntp fault!");
sControlState = CONTROL_FAULT_SNTP; sControlState = CONTROL_FAULT_SNTP;
if (bHeatingInAction) if (bHeatingInAction == true)
{ {
ESP_LOGW(TAG, "Disabling burner due to SNTP fault"); ESP_LOGW(TAG, "Control not possible due to sntp fault: Disable burner");
bHeatingInAction = false; bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED); setBurnerState(DISABLED);
setSafetyControlState(ENABLED); setSafetyControlState(ENABLED);
} }
continue; continue;
} }
sControlTemperatureEntry currentControlEntry = getControlCurrentTemperatureEntry(); sControlTemperatureEntry currentControlEntry = getCurrentTemperatureEntry();
// ESP_LOGI(TAG, "Control Entry Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", currentControlEntry.timestamp.hour, currentControlEntry.timestamp.minute, currentControlEntry.fChamberTemperature, currentControlEntry.fReturnFlowTemperature);
if (getOutdoorTemperature().fDampedValue >= SUMMER_MODE_TEMPERATURE_THRESHOLD_HIGH) if (bHeatingInAction == true)
{ {
bSummerMode = true; if ((getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature) || (getChamberTemperature().predict60s.fValue >= currentControlEntry.fChamberTemperature))
}
else if (getOutdoorTemperature().fDampedValue <= SUMMER_MODE_TEMPERATURE_THRESHOLD_LOW)
{
bSummerMode = false;
}
// Enable burner if outdoor temperature is low and return flow temperature is cooled down
if (!bHeatingInAction && (eBurnerState != BURNER_FAULT))
{
if (bSummerMode)
{ {
// ESP_LOGI(TAG, "Outdoor temperature too warm: Disabling heating"); ESP_LOGI(TAG, "Chamber Target Temperature reached: Disable burner");
bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED); setBurnerState(DISABLED);
setSafetyControlState(DISABLED); setSafetyControlState(ENABLED);
sControlState = CONTROL_OUTDOOR_TOO_WARM;
} }
else if ((getReturnFlowTemperature().average60s.fValue <= currentControlEntry.fReturnFlowTemperature) && else
(getChamberTemperature().fCurrentValue <= CHAMBER_TEMPERATURE_THRESHOLD))
{ {
ESP_LOGI(TAG, "Enabling burner: Return flow temperature target reached"); if (bHeatingInAction)
eBurnerState = BURNER_UNKNOWN; {
int64_t i64Delta = esp_timer_get_time() - i64BurnerEnableTimestamp;
if ((i64Delta / 1000000U) >= BURNER_FAULT_DETECTION_THRESHOLD)
{
if (getBurnerError() == FAULT)
{
ESP_LOGW(TAG, "Detected burner fault after %lli seconds!", (i64Delta / 1000000U));
ESP_LOGW(TAG, "Control not possible due to burner fault: Disable burner");
sControlState = CONTROL_FAULT_BURNER;
bHeatingInAction = false;
bBurnerFaultDetected = true;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
}
}
}
}
if ((bHeatingInAction == false) && (bBurnerFaultDetected == false))
{
if ((getReturnFlowTemperature().average60s.fValue <= currentControlEntry.fReturnFlowTemperature) && (getChamberTemperature().fCurrentValue <= 45.0))
{
ESP_LOGI(TAG, "Return Flow Target Temperature reached: Enable Burner");
bHeatingInAction = true; bHeatingInAction = true;
setCirculationPumpState(ENABLED);
setBurnerState(ENABLED); setBurnerState(ENABLED);
setSafetyControlState(ENABLED); setSafetyControlState(ENABLED);
i64BurnerEnableTimestamp = esp_timer_get_time(); i64BurnerEnableTimestamp = esp_timer_get_time();
@ -134,56 +149,10 @@ void taskControl(void *pvParameters)
} }
else else
{ {
// ESP_LOGI(TAG, "Return flow temperature too warm: Disabling heating");
sControlState = CONTROL_RETURN_FLOW_TOO_WARM; sControlState = CONTROL_RETURN_FLOW_TOO_WARM;
} }
} }
}
// Disable burner if target temperature is reached or a fault occurred
if (bHeatingInAction)
{
if ((getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature) ||
(getChamberTemperature().predict60s.fValue >= currentControlEntry.fChamberTemperature))
{
ESP_LOGI(TAG, "Chamber target temperature reached: Disabling burner");
bHeatingInAction = false;
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
else if (esp_timer_get_time() - i64BurnerEnableTimestamp >= BURNER_FAULT_DETECTION_THRESHOLD * 1000000U)
{
if (eBurnerState == BURNER_UNKNOWN)
{
if (getBurnerError() == FAULT)
{
// ESP_LOGW(TAG, "Burner fault detected: Disabling burner");
bHeatingInAction = false;
eBurnerState = BURNER_FAULT;
sControlState = CONTROL_FAULT_BURNER;
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
else
{
// ESP_LOGI(TAG, "No burner fault detected: Marking burner as fired");
eBurnerState = BURNER_FIRED;
}
}
}
}
// Manage circulation pump
if (getChamberTemperature().fCurrentValue <= CIRCULATION_PUMP_TEMPERATURE_THRESHOLD)
{
// ESP_LOGI(TAG, "Burner cooled down: Disabling circulation pump");
setCirculationPumpState(DISABLED);
}
else
{
// ESP_LOGI(TAG, "Burner heated: Enabling circulation pump");
setCirculationPumpState(ENABLED);
}
} // End of while(1)
} }
eControlState getControlState(void) eControlState getControlState(void)
@ -191,46 +160,78 @@ eControlState getControlState(void)
return sControlState; return sControlState;
} }
eControlWeekday getControlCurrentWeekday(void) eControlWeekday getCurrentWeekday(void)
{ {
time_t now; time_t now;
struct tm *timeinfo; struct tm *timeinfo;
// Get the current time
time(&now); time(&now);
timeinfo = localtime(&now); timeinfo = localtime(&now); // Convert to local time
// Get the day of the week (0 = Sunday, 1 = Monday, ..., 6 = Saturday)
int day = timeinfo->tm_wday; int day = timeinfo->tm_wday;
return (eControlWeekday)((day == 0) ? 6 : day - 1);
// Adjust so that Monday = 0, Sunday = 6
if (day == 0)
{
day = 6; // Sunday becomes 6
}
else
{
day -= 1; // Shift other days to make Monday = 0
}
return (eControlWeekday)day;
} }
void findControlCurrentTemperatureEntry(void) sControlTemperatureEntry getCurrentTemperatureEntry(void)
{ {
eControlWeekday currentDay = getControlCurrentWeekday(); sControlTemperatureEntry result = aControlTable[0].aTemperatureEntries[0];
eControlWeekday currentDay = getCurrentWeekday();
time_t now; time_t now;
struct tm timeinfo; struct tm timeinfo;
time(&now);
localtime_r(&now, &timeinfo);
int hour = timeinfo.tm_hour; // Get the current time
int minute = timeinfo.tm_min; time(&now);
// Convert to local time structure
localtime_r(&now, &timeinfo);
// Extract hour and minute
int hour = timeinfo.tm_hour; // Hour (0-23)
int minute = timeinfo.tm_min; // Minute (0-59)u
// ESP_LOGI(TAG, "Current Day: %i Hour: %i Minute: %i", currentDay, hour, minute);
for (int i = 0; i < sizeof(aControlTable) / sizeof(aControlTable[0]); i++) for (int i = 0; i < sizeof(aControlTable) / sizeof(aControlTable[0]); i++)
{ {
/// loops through days
// ESP_LOGI(TAG, "Day %d: %d", i + 1, aControlTable[i].day);
// int numberOfEntries = aControlTable[i].entryCount;
// ESP_LOGI(TAG, "Number of entries: %i", numberOfEntries);
for (int j = 0; j < aControlTable[i].entryCount; j++) for (int j = 0; j < aControlTable[i].entryCount; j++)
{ {
if ((aControlTable[i].day > currentDay) || if ((aControlTable[i].day) > currentDay)
(aControlTable[i].day == currentDay && aControlTable[i].aTemperatureEntries[j].timestamp.hour > hour) ||
(aControlTable[i].day == currentDay && aControlTable[i].aTemperatureEntries[j].timestamp.hour == hour && aControlTable[i].aTemperatureEntries[j].timestamp.minute >= minute))
{ {
currentControlEntry = aControlTable[i].aTemperatureEntries[j]; // ESP_LOGI(TAG, "DAY Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
return result;
} }
currentControlEntry = aControlTable[i].aTemperatureEntries[j];
if ((aControlTable[i].day == currentDay) && (aControlTable[i].aTemperatureEntries[j].timestamp.hour > hour))
{
// ESP_LOGI(TAG, "HOUR Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
return result;
}
if ((aControlTable[i].day == currentDay) && (aControlTable[i].aTemperatureEntries[j].timestamp.hour == hour) && (aControlTable[i].aTemperatureEntries[j].timestamp.minute == minute))
{
// ESP_LOGI(TAG, "MINUTE Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
return result;
}
// ESP_LOGI(TAG, "SET Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
result = aControlTable[i].aTemperatureEntries[j];
} }
} }
} return result;
}
sControlTemperatureEntry getControlCurrentTemperatureEntry(void)
{
return currentControlEntry;
}

View File

@ -14,13 +14,6 @@ typedef enum _ControlState
CONTROL_FAULT_SNTP, CONTROL_FAULT_SNTP,
} eControlState; } eControlState;
typedef enum _BurnerState
{
BURNER_UNKNOWN, // Burner is disabled or state after enabling is still unkown
BURNER_FIRED, // Burner fired successfully
BURNER_FAULT // Burner was unable to fire successfully
} eBurnerState;
typedef enum _ControlWeekday typedef enum _ControlWeekday
{ {
MONDAY, MONDAY,
@ -54,5 +47,3 @@ typedef struct _ControlDay
void initControl(void); void initControl(void);
eControlState getControlState(void); eControlState getControlState(void);
eControlWeekday getControlCurrentWeekday(void);
sControlTemperatureEntry getControlCurrentTemperatureEntry(void);

View File

@ -17,7 +17,7 @@ const uint8_t uBurnerFaultPin = 19U;
const uint8_t uDS18B20Pin = 4U; const uint8_t uDS18B20Pin = 4U;
const onewire_addr_t uChamperTempSensorAddr = 0xd00000108cd01d28; const onewire_addr_t uChamperTempSensorAddr = 0xd00000108cd01d28;
const onewire_addr_t uOutdoorTempSensorAddr = 0xd70000108a9b9128; const onewire_addr_t uOutdoorTempSensorAddr = 0x78000000c6c2f728;
const onewire_addr_t uInletFlowTempSensorAddr = 0x410000108b8c0628; const onewire_addr_t uInletFlowTempSensorAddr = 0x410000108b8c0628;
const onewire_addr_t uReturnFlowTempSensorAddr = 0x90000108cc77c28; const onewire_addr_t uReturnFlowTempSensorAddr = 0x90000108cc77c28;
@ -88,23 +88,22 @@ void initMeasurement(sMeasurement *pMeasurement)
return; return;
pMeasurement->state = MEASUREMENT_FAULT; pMeasurement->state = MEASUREMENT_FAULT;
pMeasurement->fCurrentValue = INITIALISATION_VALUE; pMeasurement->fCurrentValue = 0.0f;
pMeasurement->fDampedValue = INITIALISATION_VALUE;
pMeasurement->average10s.fValue = INITIALISATION_VALUE; pMeasurement->average10s.fValue = 0.0f;
pMeasurement->average10s.bufferCount = 0U; pMeasurement->average10s.bufferCount = 0U;
pMeasurement->average10s.bufferIndex = 0U; pMeasurement->average10s.bufferIndex = 0U;
memset(pMeasurement->average10s.samples, 0U, AVG10S_SAMPLE_SIZE); memset(pMeasurement->average10s.samples, 0U, AVG10_SAMPLE_SIZE);
pMeasurement->average60s.fValue = INITIALISATION_VALUE; pMeasurement->average60s.fValue = 0.0f;
pMeasurement->average60s.bufferCount = 0U; pMeasurement->average60s.bufferCount = 0U;
pMeasurement->average60s.bufferIndex = 0U; pMeasurement->average60s.bufferIndex = 0U;
memset(pMeasurement->average60s.samples, 0U, AVG60S_SAMPLE_SIZE); memset(pMeasurement->average60s.samples, 0U, AVG60_SAMPLE_SIZE);
pMeasurement->predict60s.fValue = INITIALISATION_VALUE; pMeasurement->predict60s.fValue = 0.0f;
pMeasurement->predict60s.bufferCount = 0U; pMeasurement->predict60s.bufferCount = 0U;
pMeasurement->predict60s.bufferIndex = 0U; pMeasurement->predict60s.bufferIndex = 0U;
memset(pMeasurement->predict60s.samples, 0U, PRED60S_SAMPLE_SIZE); memset(pMeasurement->predict60s.samples, 0U, PRED60_SAMPLE_SIZE);
} }
void updateAverage(sMeasurement *pMeasurement) void updateAverage(sMeasurement *pMeasurement)
@ -114,9 +113,9 @@ void updateAverage(sMeasurement *pMeasurement)
// Average form the last 10sec // Average form the last 10sec
pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->fCurrentValue; pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average10s.bufferIndex = (pMeasurement->average10s.bufferIndex + 1) % AVG10S_SAMPLE_SIZE; pMeasurement->average10s.bufferIndex = (pMeasurement->average10s.bufferIndex + 1) % AVG10_SAMPLE_SIZE;
if (pMeasurement->average10s.bufferCount < AVG10S_SAMPLE_SIZE) if (pMeasurement->average10s.bufferCount < AVG10_SAMPLE_SIZE)
{ {
pMeasurement->average10s.bufferCount++; pMeasurement->average10s.bufferCount++;
} }
@ -131,9 +130,9 @@ void updateAverage(sMeasurement *pMeasurement)
// Average form the last 60sec // Average form the last 60sec
pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue; pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average60s.bufferIndex = (pMeasurement->average60s.bufferIndex + 1) % AVG60S_SAMPLE_SIZE; pMeasurement->average60s.bufferIndex = (pMeasurement->average60s.bufferIndex + 1) % AVG60_SAMPLE_SIZE;
if (pMeasurement->average60s.bufferCount < AVG60S_SAMPLE_SIZE) if (pMeasurement->average60s.bufferCount < AVG60_SAMPLE_SIZE)
{ {
pMeasurement->average60s.bufferCount++; pMeasurement->average60s.bufferCount++;
} }
@ -145,24 +144,6 @@ void updateAverage(sMeasurement *pMeasurement)
} }
pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount; pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount;
// Damped current value
if (pMeasurement->fDampedValue == INITIALISATION_VALUE)
{
pMeasurement->fDampedValue = pMeasurement->fCurrentValue;
}
else
{
if (pMeasurement->fCurrentValue > pMeasurement->fDampedValue)
{
pMeasurement->fDampedValue = pMeasurement->fDampedValue + (DAMPING_FACTOR_WARMER * (pMeasurement->fCurrentValue - pMeasurement->fDampedValue));
}
if (pMeasurement->fCurrentValue < pMeasurement->fDampedValue)
{
pMeasurement->fDampedValue = pMeasurement->fDampedValue - (DAMPING_FACTOR_COLDER * (pMeasurement->fDampedValue - pMeasurement->fCurrentValue));
}
}
} }
void updatePrediction(sMeasurement *pMeasurement) void updatePrediction(sMeasurement *pMeasurement)
@ -173,8 +154,8 @@ void updatePrediction(sMeasurement *pMeasurement)
// Update predict60s buffer // Update predict60s buffer
sPredict *predict60s = &pMeasurement->predict60s; sPredict *predict60s = &pMeasurement->predict60s;
predict60s->samples[predict60s->bufferIndex] = pMeasurement->fCurrentValue; predict60s->samples[predict60s->bufferIndex] = pMeasurement->fCurrentValue;
predict60s->bufferIndex = (predict60s->bufferIndex + 1) % PRED60S_SAMPLE_SIZE; predict60s->bufferIndex = (predict60s->bufferIndex + 1) % PRED60_SAMPLE_SIZE;
if (predict60s->bufferCount < PRED60S_SAMPLE_SIZE) if (predict60s->bufferCount < PRED60_SAMPLE_SIZE)
predict60s->bufferCount++; predict60s->bufferCount++;
// Predict 60s future value using linear regression // Predict 60s future value using linear regression
@ -208,12 +189,12 @@ void taskInput(void *pvParameters)
if (ds18x20_scan_devices(uDS18B20Pin, uOneWireAddresses, MAX_DN18B20_SENSORS, &sSensorCount) != ESP_OK) if (ds18x20_scan_devices(uDS18B20Pin, uOneWireAddresses, MAX_DN18B20_SENSORS, &sSensorCount) != ESP_OK)
{ {
ESP_LOGE(TAG, "1-Wire device scan error!"); // ESP_LOGE(TAG, "1-Wire device scan error!");
} }
if (!sSensorCount) if (!sSensorCount)
{ {
ESP_LOGW(TAG, "No 1-Wire devices detected!"); // ESP_LOGW(TAG, "No 1-Wire devices detected!");
} }
else else
{ {
@ -222,14 +203,14 @@ void taskInput(void *pvParameters)
if (sSensorCount > MAX_DN18B20_SENSORS) if (sSensorCount > MAX_DN18B20_SENSORS)
{ {
sSensorCount = MAX_DN18B20_SENSORS; sSensorCount = MAX_DN18B20_SENSORS;
ESP_LOGW(TAG, "More 1-Wire devices found than expected!"); // ESP_LOGW(TAG, "More 1-Wire devices found than expected!");
} }
for (size_t iReadLoop = 0; iReadLoop < ONE_WIRE_LOOPS; iReadLoop++) for (size_t iReadLoop = 0; iReadLoop < ONE_WIRE_LOOPS; iReadLoop++)
{ {
if (ds18x20_measure_and_read_multi(uDS18B20Pin, uOneWireAddresses, sSensorCount, fDS18B20Temps) != ESP_OK) if (ds18x20_measure_and_read_multi(uDS18B20Pin, uOneWireAddresses, sSensorCount, fDS18B20Temps) != ESP_OK)
{ {
ESP_LOGE(TAG, "1-Wire devices read error"); // ESP_LOGE(TAG, "1-Wire devices read error");
vTaskDelay(PERIODIC_INTERVAL * 100U / portTICK_PERIOD_MS); // Wait 100ms if bus error occurred vTaskDelay(PERIODIC_INTERVAL * 100U / portTICK_PERIOD_MS); // Wait 100ms if bus error occurred
} }
else else
@ -290,9 +271,9 @@ void taskInput(void *pvParameters)
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex) float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex)
{ {
if (count == 0) if (count == 0)
return INITIALISATION_VALUE; // No prediction possible with no data return 0.0f; // No prediction possible with no data
float sumX = INITIALISATION_VALUE, sumY = INITIALISATION_VALUE, sumXY = INITIALISATION_VALUE, sumX2 = INITIALISATION_VALUE; float sumX = 0.0f, sumY = 0.0f, sumXY = 0.0f, sumX2 = 0.0f;
for (size_t i = 0; i < count; i++) for (size_t i = 0; i < count; i++)
{ {

View File

@ -1,13 +1,9 @@
#pragma once #pragma once
#define MAX(a, b) ((a) > (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b))
#define INITIALISATION_VALUE 0.0f #define AVG10_SAMPLE_SIZE 10U
#define AVG10S_SAMPLE_SIZE 10U #define AVG60_SAMPLE_SIZE 60U
#define AVG60S_SAMPLE_SIZE 60U #define PRED60_SAMPLE_SIZE 60U
#define AVG24H_SAMPLE_SIZE 24U
#define PRED60S_SAMPLE_SIZE 60U
#define DAMPING_FACTOR_WARMER 0.00001f // 0.001%
#define DAMPING_FACTOR_COLDER 0.00005f // 0.005%
typedef enum _BurnerErrorState typedef enum _BurnerErrorState
{ {
@ -24,7 +20,7 @@ typedef enum _MeasurementErrorState
typedef struct _Average typedef struct _Average
{ {
float fValue; float fValue;
float samples[MAX(AVG10S_SAMPLE_SIZE, MAX(AVG60S_SAMPLE_SIZE, AVG24H_SAMPLE_SIZE))]; float samples[MAX(AVG10_SAMPLE_SIZE, AVG60_SAMPLE_SIZE)];
size_t bufferIndex; size_t bufferIndex;
size_t bufferCount; size_t bufferCount;
} sAverage; } sAverage;
@ -32,7 +28,7 @@ typedef struct _Average
typedef struct _Predict typedef struct _Predict
{ {
float fValue; float fValue;
float samples[PRED60S_SAMPLE_SIZE]; float samples[PRED60_SAMPLE_SIZE];
size_t bufferIndex; size_t bufferIndex;
size_t bufferCount; size_t bufferCount;
} sPredict; } sPredict;
@ -40,7 +36,6 @@ typedef struct _Predict
typedef struct _Measurement typedef struct _Measurement
{ {
float fCurrentValue; float fCurrentValue;
float fDampedValue;
sAverage average10s; sAverage average10s;
sAverage average60s; sAverage average60s;
sPredict predict60s; sPredict predict60s;

View File

@ -128,12 +128,6 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average60s.fValue; aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average60s.fValue;
u16MetricCounter++; u16MetricCounter++;
// Chamber Temperature Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().fDampedValue;
u16MetricCounter++;
// Chamber Temperature Predict 60s // Chamber Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_pred60"); strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT; aMetrics[u16MetricCounter].type = FLOAT;
@ -158,12 +152,6 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average60s.fValue; aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average60s.fValue;
u16MetricCounter++; u16MetricCounter++;
// Inlet Flow Temperature Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().fDampedValue;
u16MetricCounter++;
// Inlet Flow Temperature Predict 60s // Inlet Flow Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_pred60"); strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT; aMetrics[u16MetricCounter].type = FLOAT;
@ -188,12 +176,6 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average60s.fValue; aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average60s.fValue;
u16MetricCounter++; u16MetricCounter++;
// Outdoor Temperature Average Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().fDampedValue;
u16MetricCounter++;
// Outdoor Temperature Predict 60s // Outdoor Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_pred60"); strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT; aMetrics[u16MetricCounter].type = FLOAT;
@ -218,12 +200,6 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average60s.fValue; aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average60s.fValue;
u16MetricCounter++; u16MetricCounter++;
// Return Flow Temperature Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().fDampedValue;
u16MetricCounter++;
// Return Flow Temperature Predict 60s // Return Flow Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_pred60"); strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT; aMetrics[u16MetricCounter].type = FLOAT;
@ -254,31 +230,6 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].u8MetricValue = getControlState(); aMetrics[u16MetricCounter].u8MetricValue = getControlState();
u16MetricCounter++; u16MetricCounter++;
// Control Current Weekday
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_weekday");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getControlCurrentWeekday();
u16MetricCounter++;
// Control Current Entry Time
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_entry_time");
aMetrics[u16MetricCounter].type = INTEGER_64;
int64_t i64SecondsSinceMidnight = (getControlCurrentTemperatureEntry().timestamp.hour * 60U * 60U) + (getControlCurrentTemperatureEntry().timestamp.minute * 60U);
aMetrics[u16MetricCounter].i64MetricValue = i64SecondsSinceMidnight;
u16MetricCounter++;
// Control Current Entry Chamber Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_entry_chamber_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getControlCurrentTemperatureEntry().fChamberTemperature;
u16MetricCounter++;
// Control Current Entry Return Flow Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_entry_return_flow_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getControlCurrentTemperatureEntry().fReturnFlowTemperature;
u16MetricCounter++;
// SNTP State // SNTP State
strcpy(aMetrics[u16MetricCounter].caMetricName, "sntp_state"); strcpy(aMetrics[u16MetricCounter].caMetricName, "sntp_state");
aMetrics[u16MetricCounter].type = INTEGER_U8; aMetrics[u16MetricCounter].type = INTEGER_U8;
@ -307,7 +258,6 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].i64MetricValue = ap.rssi; aMetrics[u16MetricCounter].i64MetricValue = ap.rssi;
u16MetricCounter++; u16MetricCounter++;
ESP_ERROR_CHECK(u16MetricCounter > METRIC_MAX_COUNT);
vSetMetrics(aMetrics, u16MetricCounter); vSetMetrics(aMetrics, u16MetricCounter);
} }
} }

View File

@ -4,7 +4,7 @@
#define HTML_RESPONSE_SIZE 4096U #define HTML_RESPONSE_SIZE 4096U
#define METRIC_NAME_MAX_SIZE 64U #define METRIC_NAME_MAX_SIZE 64U
#define METRIC_MAX_COUNT 38U #define METRIC_MAX_COUNT 32U
typedef enum _MetricValueType typedef enum _MetricValueType
{ {

View File

@ -85,7 +85,7 @@ void checkSensorSanity(void)
if (sCurrentMeasurement.state == MEASUREMENT_FAULT) if (sCurrentMeasurement.state == MEASUREMENT_FAULT)
{ {
ESP_LOGE(TAG, "%s Sensor not found!", sanityChecks[i].name); //ESP_LOGE(TAG, "%s Sensor not found!", sanityChecks[i].name);
sanityChecks[i].state = SENSOR_NOT_FOUND; sanityChecks[i].state = SENSOR_NOT_FOUND;
sSafetyState = SAFETY_SENSOR_ERROR; sSafetyState = SAFETY_SENSOR_ERROR;
} }