Compare commits

..

No commits in common. "main" and "a0.0.1" have entirely different histories.
main ... a0.0.1

8 changed files with 84 additions and 240 deletions

View File

@ -77,35 +77,31 @@ Sntp <|-- Metrics
#### Example
```
burner_fault_pending 1
circulation_pump_enabled 1
burner_enabled 0
safety_contact_enabled 0
chamber_temperature 58.750000
chamber_temperature_avg10 58.931252
chamber_temperature_avg60 59.190475
chamber_temperature_pred60 55.870998
inlet_flow_temperature 53.875000
inlet_flow_temperature_avg10 53.900002
inlet_flow_temperature_avg60 53.994320
inlet_flow_temperature_pred60 52.848743
outdoor_temperature 18.000000
outdoor_temperature_avg10 18.006250
outdoor_temperature_avg60 18.002840
outdoor_temperature_pred60 18.050785
return_flow_temperature 48.625000
return_flow_temperature_avg10 48.718750
return_flow_temperature_avg60 48.846592
return_flow_temperature_pred60 47.383083
circulation_pump_enabled 0
burner_enabled 1
safety_contact_enabled 1
chamber_temperature 21.812500
chamber_temperature_avg10 21.837500
chamber_temperature_avg60 21.825521
inlet_flow_temperature 22.437500
inlet_flow_temperature_avg10 22.437500
inlet_flow_temperature_avg60 22.434896
outdoor_temperature 21.937500
outdoor_temperature_avg10 21.937500
outdoor_temperature_avg60 21.933594
return_flow_temperature 22.375000
return_flow_temperature_avg10 22.375000
return_flow_temperature_avg60 22.375000
chamber_temperature_state 0
outdoor_temperature_state 0
inlet_flow_temperature_state 0
return_flow_temperature_state 0
safety_state 0
control_state 3
control_state 5
sntp_state 0
system_unixtime 1735242392
uptime_seconds 40
wifi_rssi -74
system_unixtime 1734814285
uptime_seconds 90
wifi_rssi -63
```
#### Status Encoding
@ -135,15 +131,15 @@ wifi_rssi -74
##### Control Loop
- control_state
| Enum eControlState in [control.h](main/control.h) | Value | Description |
|---------------------------------------------------|-------|--------------------------------------------------|
| CONTROL_STARTING | 0 | |
| CONTROL_HEATING | 1 | Burner running |
| CONTROL_OUTDOOR_TOO_WARM | 2 | Heating not needed |
| CONTROL_RETURN_FLOW_TOO_WARM | 3 | Heating not needed |
| CONTROL_FAULT_BURNER | 4 | Burner reported fault after threshold is reached |
| CONTROL_FAULT_SAFETY | 5 | Unable to control due safety fault |
| CONTROL_FAULT_SNTP | 6 | Unable to control due SNTP fault |
| Enum eControlState in [control.h](main/control.h) | Value | Description |
|---------------------------------------------------|-------|------------------------------------|
| CONTROL_STARTING | 0 | |
| CONTROL_HEATING | 1 | Burner running |
| CONTROL_OUTDOOR_TOO_WARM | 2 | Heating not needed |
| CONTROL_RETURN_FLOW_TOO_WARM | 3 | Heating not needed |
| CONTROL_BURNER_FAULT | 4 | Burner reported fault |
| CONTROL_FAULT_SAFETY | 5 | Unable to control due safety fault |
| CONTROL_FAULT_SNTP | 6 | Unable to control due SNTP fault |
##### SNTP Client
- sntp_state

View File

@ -1,6 +1,5 @@
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_timer.h"
#include "esp_log.h"
#include "control.h"
#include "outputs.h"
@ -12,8 +11,7 @@
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0
#define CHAMPER_TEMPERATURE_TARGET 80.0
#define BURNER_FAULT_DETECTION_THRESHOLD (60U * 3U) // Detect burner fault if after 3 minutes no burner start detected
#define CHAMPER_TEMPERATURE_TARGET 70.0
static const char *TAG = "smart-oil-heater-control-system-control";
static eControlState sControlState = CONTROL_STARTING;
@ -37,7 +35,7 @@ void initControl(void)
BaseType_t taskCreated = xTaskCreate(
taskControl, // Function to implement the task
"taskControl", // Task name
8192, // Stack size (in words, not bytes)
4096, // Stack size (in words, not bytes)
NULL, // Parameters to the task function (none in this case)
5, // Task priority (higher number = higher priority)
NULL // Task handle (optional)
@ -56,9 +54,6 @@ void initControl(void)
void taskControl(void *pvParameters)
{
bool bHeatingInAction = false;
bool bBurnerFaultDetected = false;
int64_t i64BurnerEnableTimestamp = esp_timer_get_time();
while (1)
{
vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS);
@ -69,7 +64,7 @@ void taskControl(void *pvParameters)
sControlState = CONTROL_FAULT_SAFETY;
if (bHeatingInAction == true)
{
ESP_LOGW(TAG, "Control not possible due to safety fault: Disable burner");
ESP_LOGI(TAG, "Control not possible due to safety fault: Disable burner");
bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED);
@ -84,7 +79,7 @@ void taskControl(void *pvParameters)
sControlState = CONTROL_FAULT_SNTP;
if (bHeatingInAction == true)
{
ESP_LOGW(TAG, "Control not possible due to sntp fault: Disable burner");
ESP_LOGI(TAG, "Control not possible due to sntp fault: Disable burner");
bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED);
@ -98,7 +93,7 @@ void taskControl(void *pvParameters)
if (bHeatingInAction == true)
{
if ((getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature) || (getChamberTemperature().predict60s.fValue >= currentControlEntry.fChamberTemperature))
if (getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature)
{
ESP_LOGI(TAG, "Chamber Target Temperature reached: Disable burner");
bHeatingInAction = false;
@ -110,27 +105,12 @@ void taskControl(void *pvParameters)
{
if (bHeatingInAction)
{
int64_t i64Delta = esp_timer_get_time() - i64BurnerEnableTimestamp;
if ((i64Delta / 1000000U) >= BURNER_FAULT_DETECTION_THRESHOLD)
{
if (getBurnerError() == FAULT)
{
ESP_LOGW(TAG, "Detected burner fault after %lli seconds!", (i64Delta / 1000000U));
ESP_LOGW(TAG, "Control not possible due to burner fault: Disable burner");
sControlState = CONTROL_FAULT_BURNER;
bHeatingInAction = false;
bBurnerFaultDetected = true;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
}
// TODO: Check burner fault signal here
}
}
}
if ((bHeatingInAction == false) && (bBurnerFaultDetected == false))
if (bHeatingInAction == false)
{
if ((getReturnFlowTemperature().average60s.fValue <= currentControlEntry.fReturnFlowTemperature) && (getChamberTemperature().fCurrentValue <= 45.0))
{
@ -139,7 +119,6 @@ void taskControl(void *pvParameters)
setCirculationPumpState(ENABLED);
setBurnerState(ENABLED);
setSafetyControlState(ENABLED);
i64BurnerEnableTimestamp = esp_timer_get_time();
sControlState = CONTROL_HEATING;
}
else

View File

@ -9,7 +9,7 @@ typedef enum _ControlState
CONTROL_HEATING,
CONTROL_OUTDOOR_TOO_WARM,
CONTROL_RETURN_FLOW_TOO_WARM,
CONTROL_FAULT_BURNER,
CONTROL_BURNER_FAULT,
CONTROL_FAULT_SAFETY,
CONTROL_FAULT_SNTP,
} eControlState;

View File

@ -1,8 +1,6 @@
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include <string.h>
#include <math.h>
#include "esp_log.h"
#include <ds18x20.h>
@ -16,10 +14,10 @@ static const char *TAG = "smart-oil-heater-control-system-inputs";
const uint8_t uBurnerFaultPin = 19U;
const uint8_t uDS18B20Pin = 4U;
const onewire_addr_t uChamperTempSensorAddr = 0xd00000108cd01d28;
const onewire_addr_t uOutdoorTempSensorAddr = 0x78000000c6c2f728;
const onewire_addr_t uInletFlowTempSensorAddr = 0x410000108b8c0628;
const onewire_addr_t uReturnFlowTempSensorAddr = 0x90000108cc77c28;
const onewire_addr_t uChamperTempSensorAddr = 0x3e0000001754be28;
const onewire_addr_t uOutdoorTempSensorAddr = 0x880000001648e328;
const onewire_addr_t uInletFlowTempSensorAddr = 0xe59cdef51e64ff28;
const onewire_addr_t uReturnFlowTempSensorAddr = 0xa7a8e1531f64ff28;
onewire_addr_t uOneWireAddresses[MAX_DN18B20_SENSORS];
float fDS18B20Temps[MAX_DN18B20_SENSORS];
@ -33,10 +31,7 @@ static sMeasurement sInletFlowTemperature;
static sMeasurement sReturnFlowTemperature;
void taskInput(void *pvParameters);
void initMeasurement(sMeasurement *pMeasurement);
void updateAverage(sMeasurement *pMeasurement);
void updatePrediction(sMeasurement *pMeasurement);
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex);
void initInputs(void)
{
@ -58,11 +53,6 @@ void initInputs(void)
}
xSemaphoreGiveRecursive(xMutexAccessInputs);
initMeasurement(&sChamperTemperature);
initMeasurement(&sOutdoorTemperature);
initMeasurement(&sInletFlowTemperature);
initMeasurement(&sReturnFlowTemperature);
BaseType_t taskCreated = xTaskCreate(
taskInput, // Function to implement the task
"taskInput", // Task name
@ -82,36 +72,8 @@ void initInputs(void)
}
}
void initMeasurement(sMeasurement *pMeasurement)
{
if (!pMeasurement)
return;
pMeasurement->state = MEASUREMENT_FAULT;
pMeasurement->fCurrentValue = 0.0f;
pMeasurement->average10s.fValue = 0.0f;
pMeasurement->average10s.bufferCount = 0U;
pMeasurement->average10s.bufferIndex = 0U;
memset(pMeasurement->average10s.samples, 0U, AVG10_SAMPLE_SIZE);
pMeasurement->average60s.fValue = 0.0f;
pMeasurement->average60s.bufferCount = 0U;
pMeasurement->average60s.bufferIndex = 0U;
memset(pMeasurement->average60s.samples, 0U, AVG60_SAMPLE_SIZE);
pMeasurement->predict60s.fValue = 0.0f;
pMeasurement->predict60s.bufferCount = 0U;
pMeasurement->predict60s.bufferIndex = 0U;
memset(pMeasurement->predict60s.samples, 0U, PRED60_SAMPLE_SIZE);
}
void updateAverage(sMeasurement *pMeasurement)
{
if (!pMeasurement)
return;
// Average form the last 10sec
{ /* Average form the last 10sec */
pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average10s.bufferIndex = (pMeasurement->average10s.bufferIndex + 1) % AVG10_SAMPLE_SIZE;
@ -120,15 +82,20 @@ void updateAverage(sMeasurement *pMeasurement)
pMeasurement->average10s.bufferCount++;
}
if (pMeasurement->average10s.bufferCount == 0U)
{
pMeasurement->average10s.fValue = pMeasurement->fCurrentValue;
}
float sum = 0.0;
for (int i = 0; i <= pMeasurement->average10s.bufferCount; i++)
for (int i = 0; i < pMeasurement->average10s.bufferCount; i++)
{
sum += pMeasurement->average10s.samples[i];
}
pMeasurement->average10s.fValue = sum / pMeasurement->average10s.bufferCount;
// Average form the last 60sec
/* Average form the last 60sec */
pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average60s.bufferIndex = (pMeasurement->average60s.bufferIndex + 1) % AVG60_SAMPLE_SIZE;
@ -137,8 +104,13 @@ void updateAverage(sMeasurement *pMeasurement)
pMeasurement->average60s.bufferCount++;
}
if (pMeasurement->average60s.bufferCount == 0U)
{
pMeasurement->average60s.fValue = pMeasurement->fCurrentValue;
}
sum = 0.0;
for (int i = 0; i <= pMeasurement->average60s.bufferCount; i++)
for (int i = 0; i < pMeasurement->average60s.bufferCount; i++)
{
sum += pMeasurement->average60s.samples[i];
}
@ -146,26 +118,6 @@ void updateAverage(sMeasurement *pMeasurement)
pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount;
}
void updatePrediction(sMeasurement *pMeasurement)
{
if (!pMeasurement)
return;
// Update predict60s buffer
sPredict *predict60s = &pMeasurement->predict60s;
predict60s->samples[predict60s->bufferIndex] = pMeasurement->fCurrentValue;
predict60s->bufferIndex = (predict60s->bufferIndex + 1) % PRED60_SAMPLE_SIZE;
if (predict60s->bufferCount < PRED60_SAMPLE_SIZE)
predict60s->bufferCount++;
// Predict 60s future value using linear regression
predict60s->fValue = linearRegressionPredict(
predict60s->samples,
predict60s->bufferCount,
predict60s->bufferIndex,
predict60s->bufferCount + 60.0f);
}
void taskInput(void *pvParameters)
{
while (1)
@ -211,7 +163,7 @@ void taskInput(void *pvParameters)
if (ds18x20_measure_and_read_multi(uDS18B20Pin, uOneWireAddresses, sSensorCount, fDS18B20Temps) != ESP_OK)
{
ESP_LOGE(TAG, "1-Wire devices read error");
vTaskDelay(PERIODIC_INTERVAL * 100U / portTICK_PERIOD_MS); // Wait 100ms if bus error occurred
vTaskDelay(PERIODIC_INTERVAL * 100U / portTICK_PERIOD_MS); //Wait 100ms if bus error occurred
}
else
{
@ -226,25 +178,21 @@ void taskInput(void *pvParameters)
sChamperTemperature.fCurrentValue = temp_c;
sChamperTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sChamperTemperature);
updatePrediction(&sChamperTemperature);
break;
case ((uint64_t)uOutdoorTempSensorAddr):
sOutdoorTemperature.fCurrentValue = temp_c;
sOutdoorTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sOutdoorTemperature);
updatePrediction(&sOutdoorTemperature);
break;
case ((uint64_t)uInletFlowTempSensorAddr):
sInletFlowTemperature.fCurrentValue = temp_c;
sInletFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sInletFlowTemperature);
updatePrediction(&sInletFlowTemperature);
break;
case ((uint64_t)uReturnFlowTempSensorAddr):
sReturnFlowTemperature.fCurrentValue = temp_c;
sReturnFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sReturnFlowTemperature);
updatePrediction(&sReturnFlowTemperature);
break;
default:
break;
@ -268,39 +216,6 @@ void taskInput(void *pvParameters)
}
}
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex)
{
if (count == 0)
return 0.0f; // No prediction possible with no data
float sumX = 0.0f, sumY = 0.0f, sumXY = 0.0f, sumX2 = 0.0f;
for (size_t i = 0; i < count; i++)
{
// Calculate the circular buffer index for the current sample
size_t circularIndex = (bufferIndex + i + 1) % count;
float x = (float)i; // Time index
float y = samples[circularIndex]; // Sample value
sumX += x;
sumY += y;
sumXY += x * y;
sumX2 += x * x;
}
// Calculate slope (m) and intercept (b) of the line: y = mx + b
float denominator = (count * sumX2 - sumX * sumX);
if (fabs(denominator) < 1e-6) // Avoid division by zero
return samples[bufferIndex]; // Return the latest value as prediction
float m = (count * sumXY - sumX * sumY) / denominator;
float b = (sumY - m * sumX) / count;
// Predict value at futureIndex
return m * futureIndex + b;
}
sMeasurement getChamberTemperature(void)
{
sMeasurement ret;

View File

@ -3,7 +3,6 @@
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define AVG10_SAMPLE_SIZE 10U
#define AVG60_SAMPLE_SIZE 60U
#define PRED60_SAMPLE_SIZE 60U
typedef enum _BurnerErrorState
{
@ -25,20 +24,11 @@ typedef struct _Average
size_t bufferCount;
} sAverage;
typedef struct _Predict
{
float fValue;
float samples[PRED60_SAMPLE_SIZE];
size_t bufferIndex;
size_t bufferCount;
} sPredict;
typedef struct _Measurement
{
float fCurrentValue;
sAverage average10s;
sAverage average60s;
sPredict predict60s;
eMeasurementErrorState state;
} sMeasurement;

View File

@ -32,7 +32,7 @@ void initMetrics(void)
BaseType_t taskCreated = xTaskCreate(
taskMetrics, // Function to implement the task
"taskMetrics", // Task name
32768, // Stack size (in words, not bytes)
16384, // Stack size (in words, not bytes)
NULL, // Parameters to the task function (none in this case)
5, // Task priority (higher number = higher priority)
NULL // Task handle (optional)
@ -56,13 +56,13 @@ void taskMetrics(void *pvParameters)
u16MetricCounter = 0U;
// Burner Error State
/*Burner Error State*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "burner_fault_pending");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getBurnerError();
u16MetricCounter++;
// Circulation Pump State
/*Circulation Pump State*/
if (getCirculationPumpState() == ENABLED)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "circulation_pump_enabled");
@ -78,7 +78,7 @@ void taskMetrics(void *pvParameters)
u16MetricCounter++;
}
// Burner State
/*Burner State*/
if (getBurnerState() == ENABLED)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "burner_enabled");
@ -94,7 +94,7 @@ void taskMetrics(void *pvParameters)
u16MetricCounter++;
}
// Safety Contact State
/*Safety Contact State*/
if (getSafetyControlState() == ENABLED)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "safety_contact_enabled");
@ -110,103 +110,79 @@ void taskMetrics(void *pvParameters)
u16MetricCounter++;
}
// Chamber Temperature
/*Chamber Temperature*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().fCurrentValue;
u16MetricCounter++;
// Chamber Temperature Average 10s
/*Chamber Temperature Average 10s*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average10s.fValue;
u16MetricCounter++;
// Chamber Temperature Average 60s
/*Chamber Temperature Average 60s*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average60s.fValue;
u16MetricCounter++;
// Chamber Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().predict60s.fValue;
u16MetricCounter++;
// Inlet Flow Temperature
/*Inlet Flow Temperature*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().fCurrentValue;
u16MetricCounter++;
// Inlet Flow Temperature Average 10s
/*Inlet Flow Temperature Average 10s*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average10s.fValue;
u16MetricCounter++;
// Inlet Flow Temperature Average 60s
/*Inlet Flow Temperature Average 60s*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average60s.fValue;
u16MetricCounter++;
// Inlet Flow Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().predict60s.fValue;
u16MetricCounter++;
// Outdoor Temperature
/*Outdoor Temperature*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().fCurrentValue;
u16MetricCounter++;
// Outdoor Temperature Average 10s
/*Outdoor Temperature Average 10s*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average10s.fValue;
u16MetricCounter++;
// Outdoor Temperature Average 60s
/*Outdoor Temperature Average 60s*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average60s.fValue;
u16MetricCounter++;
// Outdoor Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().predict60s.fValue;
u16MetricCounter++;
// Return Flow Temperature
/*Return Flow Temperature*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().fCurrentValue;
u16MetricCounter++;
// Return Flow Temperature Average 10s
/*Return Flow Temperature Average 10s*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average10s.fValue;
u16MetricCounter++;
// Return Flow Temperature Average 60s
/*Return Flow Temperature Average 60s*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average60s.fValue;
u16MetricCounter++;
// Return Flow Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().predict60s.fValue;
u16MetricCounter++;
// Sensor State
/*Sensor State*/
sSensorSanityCheck aChecks[NUMBER_OF_SENSOR_SANITY_CHECKS];
getSensorSanityStates(aChecks);
for (size_t i = 0; i < NUMBER_OF_SENSOR_SANITY_CHECKS; i++)
@ -218,25 +194,25 @@ void taskMetrics(void *pvParameters)
u16MetricCounter++;
}
// Safety State
/*Safety State*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "safety_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getSafetyState();
u16MetricCounter++;
// Control State
/*Control State*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getControlState();
u16MetricCounter++;
// SNTP State
/*SNTP State*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "sntp_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getSntpState();
u16MetricCounter++;
// System Time
/*System Time*/
time_t now;
time(&now);
strcpy(aMetrics[u16MetricCounter].caMetricName, "system_unixtime");
@ -244,13 +220,13 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].i64MetricValue = now;
u16MetricCounter++;
// Uptime
/*Uptime*/
strcpy(aMetrics[u16MetricCounter].caMetricName, "uptime_seconds");
aMetrics[u16MetricCounter].type = INTEGER_64;
aMetrics[u16MetricCounter].i64MetricValue = (esp_timer_get_time() / 1000000U);
u16MetricCounter++;
// Wifi RSSI
/*Wifi RSSI*/
wifi_ap_record_t ap;
esp_wifi_sta_get_ap_info(&ap);
strcpy(aMetrics[u16MetricCounter].caMetricName, "wifi_rssi");
@ -267,7 +243,7 @@ void vSetMetrics(sMetric *paMetrics, uint16_t u16Size)
if (xSemaphoreTakeRecursive(xMutexAccessMetricResponse, pdMS_TO_TICKS(5000)) == pdTRUE)
{
memset(caHtmlResponse, 0U, strlen(caHtmlResponse));
memset(caHtmlResponse, 0, strlen(caHtmlResponse));
for (uint16_t u16Index = 0U; u16Index < u16Size; u16Index++)
{
char caValueBuffer[64];
@ -287,7 +263,6 @@ void vSetMetrics(sMetric *paMetrics, uint16_t u16Size)
break;
}
// printf("%s\n", paMetrics[u16Index].caMetricName);
// printf("%s\n", caValueBuffer);
strcat(caHtmlResponse, paMetrics[u16Index].caMetricName);
strcat(caHtmlResponse, caValueBuffer);

View File

@ -2,9 +2,9 @@
#include <esp_http_server.h>
#define HTML_RESPONSE_SIZE 4096U
#define METRIC_NAME_MAX_SIZE 64U
#define METRIC_MAX_COUNT 32U
#define HTML_RESPONSE_SIZE 1024U
#define METRIC_NAME_MAX_SIZE 256U
#define METRIC_MAX_COUNT 64U
typedef enum _MetricValueType
{

View File

@ -155,16 +155,5 @@ void getSensorSanityStates(sSensorSanityCheck *pSensorSanityChecks)
eSafetyState getSafetyState(void)
{
eSafetyState state = SAFETY_NO_ERROR;
if (xSemaphoreTakeRecursive(xMutexAccessSafety, pdMS_TO_TICKS(5000)) == pdTRUE)
{
state = sSafetyState;
xSemaphoreGiveRecursive(xMutexAccessSafety);
}
else
{
state = SAFETY_INTERNAL_ERROR;
ESP_LOGE(TAG, "Unable to take mutex: getSafetyState()");
}
return state;
return sSafetyState;
}