bugfix/linear-regression-prediction #19
@ -36,7 +36,7 @@ void taskInput(void *pvParameters);
|
|||||||
void initMeasurement(sMeasurement *pMeasurement);
|
void initMeasurement(sMeasurement *pMeasurement);
|
||||||
void updateAverage(sMeasurement *pMeasurement);
|
void updateAverage(sMeasurement *pMeasurement);
|
||||||
void updatePrediction(sMeasurement *pMeasurement);
|
void updatePrediction(sMeasurement *pMeasurement);
|
||||||
float linearRegressionPredict(const float *samples, size_t count, float futureIndex);
|
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex);
|
||||||
|
|
||||||
void initInputs(void)
|
void initInputs(void)
|
||||||
{
|
{
|
||||||
@ -162,6 +162,7 @@ void updatePrediction(sMeasurement *pMeasurement)
|
|||||||
predict60s->fValue = linearRegressionPredict(
|
predict60s->fValue = linearRegressionPredict(
|
||||||
predict60s->samples,
|
predict60s->samples,
|
||||||
predict60s->bufferCount,
|
predict60s->bufferCount,
|
||||||
|
predict60s->bufferIndex,
|
||||||
predict60s->bufferCount + 60.0f);
|
predict60s->bufferCount + 60.0f);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -267,7 +268,7 @@ void taskInput(void *pvParameters)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
float linearRegressionPredict(const float *samples, size_t count, float futureIndex)
|
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex)
|
||||||
{
|
{
|
||||||
if (count == 0)
|
if (count == 0)
|
||||||
return 0.0f; // No prediction possible with no data
|
return 0.0f; // No prediction possible with no data
|
||||||
@ -276,8 +277,11 @@ float linearRegressionPredict(const float *samples, size_t count, float futureIn
|
|||||||
|
|
||||||
for (size_t i = 0; i < count; i++)
|
for (size_t i = 0; i < count; i++)
|
||||||
{
|
{
|
||||||
float x = (float)i; // Time index
|
// Calculate the circular buffer index for the current sample
|
||||||
float y = samples[i]; // Sample value
|
size_t circularIndex = (bufferIndex + i + 1) % count;
|
||||||
|
|
||||||
|
float x = (float)i; // Time index
|
||||||
|
float y = samples[circularIndex]; // Sample value
|
||||||
|
|
||||||
sumX += x;
|
sumX += x;
|
||||||
sumY += y;
|
sumY += y;
|
||||||
@ -287,8 +291,8 @@ float linearRegressionPredict(const float *samples, size_t count, float futureIn
|
|||||||
|
|
||||||
// Calculate slope (m) and intercept (b) of the line: y = mx + b
|
// Calculate slope (m) and intercept (b) of the line: y = mx + b
|
||||||
float denominator = (count * sumX2 - sumX * sumX);
|
float denominator = (count * sumX2 - sumX * sumX);
|
||||||
if (fabs(denominator) < 1e-6) // Avoid division by zero
|
if (fabs(denominator) < 1e-6) // Avoid division by zero
|
||||||
return samples[count - 1]; // Return last value as prediction
|
return samples[bufferIndex]; // Return the latest value as prediction
|
||||||
|
|
||||||
float m = (count * sumXY - sumX * sumY) / denominator;
|
float m = (count * sumXY - sumX * sumY) / denominator;
|
||||||
float b = (sumY - m * sumX) / count;
|
float b = (sumY - m * sumX) / count;
|
||||||
|
Loading…
Reference in New Issue
Block a user