smart-oil-heating-control-s.../main/inputs.c
2024-12-23 14:15:53 +01:00

295 lines
9.8 KiB
C

#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "esp_log.h"
#include <ds18x20.h>
#include "inputs.h"
#define MAX_DN18B20_SENSORS 4U
#define ONE_WIRE_LOOPS 2U // try to read the 1-Wire sensors that often
#define PERIODIC_INTERVAL 1U // read and compute the inputs every 1sec
static const char *TAG = "smart-oil-heater-control-system-inputs";
const uint8_t uBurnerFaultPin = 19U;
const uint8_t uDS18B20Pin = 4U;
const onewire_addr_t uChamperTempSensorAddr = 0x3e0000001754be28;
const onewire_addr_t uOutdoorTempSensorAddr = 0x880000001648e328;
const onewire_addr_t uInletFlowTempSensorAddr = 0xe59cdef51e64ff28;
const onewire_addr_t uReturnFlowTempSensorAddr = 0xa7a8e1531f64ff28;
onewire_addr_t uOneWireAddresses[MAX_DN18B20_SENSORS];
float fDS18B20Temps[MAX_DN18B20_SENSORS];
size_t sSensorCount = 0U;
static SemaphoreHandle_t xMutexAccessInputs = NULL;
static eBurnerErrorState sBurnerErrorState;
static sMeasurement sChamperTemperature;
static sMeasurement sOutdoorTemperature;
static sMeasurement sInletFlowTemperature;
static sMeasurement sReturnFlowTemperature;
void taskInput(void *pvParameters);
void updateAverage(sMeasurement *pMeasurement);
void initInputs(void)
{
gpio_config_t ioConfBurnerFault = {
.pin_bit_mask = (1ULL << uBurnerFaultPin), // Pin mask
.mode = GPIO_MODE_INPUT, // Set as inout
.pull_up_en = GPIO_PULLUP_ENABLE, // Enable pull-up
.pull_down_en = GPIO_PULLDOWN_DISABLE, // Disable pull-down
.intr_type = GPIO_INTR_DISABLE // Disable interrupts
};
gpio_config(&ioConfBurnerFault);
xMutexAccessInputs = xSemaphoreCreateRecursiveMutex();
if (xMutexAccessInputs == NULL)
{
ESP_LOGE(TAG, "Unable to create mutex");
}
xSemaphoreGiveRecursive(xMutexAccessInputs);
BaseType_t taskCreated = xTaskCreate(
taskInput, // Function to implement the task
"taskInput", // Task name
4096, // Stack size (in words, not bytes)
NULL, // Parameters to the task function (none in this case)
5, // Task priority (higher number = higher priority)
NULL // Task handle (optional)
);
if (taskCreated == pdPASS)
{
ESP_LOGI(TAG, "Task created successfully!");
}
else
{
ESP_LOGE(TAG, "Failed to create task");
}
}
void updateAverage(sMeasurement *pMeasurement)
{ /* Average form the last 10sec */
pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average10s.bufferIndex = (pMeasurement->average10s.bufferIndex + 1) % AVG10_SAMPLE_SIZE;
if (pMeasurement->average10s.bufferCount < AVG10_SAMPLE_SIZE)
{
pMeasurement->average10s.bufferCount++;
}
if (pMeasurement->average10s.bufferCount == 0U)
{
pMeasurement->average10s.fValue = pMeasurement->fCurrentValue;
}
float sum = 0.0;
for (int i = 0; i < pMeasurement->average10s.bufferCount; i++)
{
sum += pMeasurement->average10s.samples[i];
}
pMeasurement->average10s.fValue = sum / pMeasurement->average10s.bufferCount;
/* Average form the last 60sec */
pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average60s.bufferIndex = (pMeasurement->average60s.bufferIndex + 1) % AVG60_SAMPLE_SIZE;
if (pMeasurement->average60s.bufferCount < AVG60_SAMPLE_SIZE)
{
pMeasurement->average60s.bufferCount++;
}
if (pMeasurement->average60s.bufferCount == 0U)
{
pMeasurement->average60s.fValue = pMeasurement->fCurrentValue;
}
sum = 0.0;
for (int i = 0; i < pMeasurement->average60s.bufferCount; i++)
{
sum += pMeasurement->average60s.samples[i];
}
pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount;
}
void taskInput(void *pvParameters)
{
while (1)
{
vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS);
if (xSemaphoreTakeRecursive(xMutexAccessInputs, portMAX_DELAY) == pdTRUE)
{
sChamperTemperature.state = MEASUREMENT_FAULT;
sOutdoorTemperature.state = MEASUREMENT_FAULT;
sInletFlowTemperature.state = MEASUREMENT_FAULT;
sReturnFlowTemperature.state = MEASUREMENT_FAULT;
if (gpio_get_level(uBurnerFaultPin) == 1)
{
sBurnerErrorState = FAULT;
}
else
{
sBurnerErrorState = NO_ERROR;
}
if (ds18x20_scan_devices(uDS18B20Pin, uOneWireAddresses, MAX_DN18B20_SENSORS, &sSensorCount) != ESP_OK)
{
ESP_LOGE(TAG, "1-Wire device scan error!");
}
if (!sSensorCount)
{
ESP_LOGW(TAG, "No 1-Wire devices detected!");
}
else
{
// ESP_LOGI(TAG, "%d 1-Wire devices detected", sSensorCount);
if (sSensorCount > MAX_DN18B20_SENSORS)
{
sSensorCount = MAX_DN18B20_SENSORS;
ESP_LOGW(TAG, "More 1-Wire devices found than expected!");
}
for (size_t iReadLoop = 0; iReadLoop < ONE_WIRE_LOOPS; iReadLoop++)
{
if (ds18x20_measure_and_read_multi(uDS18B20Pin, uOneWireAddresses, sSensorCount, fDS18B20Temps) != ESP_OK)
{
ESP_LOGE(TAG, "1-Wire devices read error");
}
else
{
for (int j = 0; j < sSensorCount; j++)
{
float temp_c = fDS18B20Temps[j];
// ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c);
switch ((uint64_t)uOneWireAddresses[j])
{
case ((uint64_t)uChamperTempSensorAddr):
sChamperTemperature.fCurrentValue = temp_c;
sChamperTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sChamperTemperature);
break;
case ((uint64_t)uOutdoorTempSensorAddr):
sOutdoorTemperature.fCurrentValue = temp_c;
sOutdoorTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sOutdoorTemperature);
break;
case ((uint64_t)uInletFlowTempSensorAddr):
sInletFlowTemperature.fCurrentValue = temp_c;
sInletFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sInletFlowTemperature);
break;
case ((uint64_t)uReturnFlowTempSensorAddr):
sReturnFlowTemperature.fCurrentValue = temp_c;
sReturnFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sReturnFlowTemperature);
break;
default:
break;
}
}
break;
}
}
}
xSemaphoreGiveRecursive(xMutexAccessInputs);
}
else
{
sChamperTemperature.state = MEASUREMENT_FAULT;
sOutdoorTemperature.state = MEASUREMENT_FAULT;
sInletFlowTemperature.state = MEASUREMENT_FAULT;
sReturnFlowTemperature.state = MEASUREMENT_FAULT;
ESP_LOGE(TAG, "Unable to take mutex: taskInput()");
}
}
}
sMeasurement getChamberTemperature(void)
{
sMeasurement ret;
ret.state = MEASUREMENT_FAULT;
if (xSemaphoreTakeRecursive(xMutexAccessInputs, pdMS_TO_TICKS(5000)) == pdTRUE)
{
ret = sChamperTemperature;
xSemaphoreGiveRecursive(xMutexAccessInputs);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: getChamberTemperature()");
}
return ret;
}
sMeasurement getOutdoorTemperature(void)
{
sMeasurement ret;
ret.state = MEASUREMENT_FAULT;
if (xSemaphoreTakeRecursive(xMutexAccessInputs, pdMS_TO_TICKS(5000)) == pdTRUE)
{
ret = sOutdoorTemperature;
xSemaphoreGiveRecursive(xMutexAccessInputs);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: getOutdoorTemperature()");
}
return ret;
}
sMeasurement getInletFlowTemperature(void)
{
sMeasurement ret;
ret.state = MEASUREMENT_FAULT;
if (xSemaphoreTakeRecursive(xMutexAccessInputs, pdMS_TO_TICKS(5000)) == pdTRUE)
{
ret = sInletFlowTemperature;
xSemaphoreGiveRecursive(xMutexAccessInputs);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: getInletFlowTemperature()");
}
return ret;
}
sMeasurement getReturnFlowTemperature(void)
{
sMeasurement ret;
ret.state = MEASUREMENT_FAULT;
if (xSemaphoreTakeRecursive(xMutexAccessInputs, pdMS_TO_TICKS(5000)) == pdTRUE)
{
ret = sReturnFlowTemperature;
xSemaphoreGiveRecursive(xMutexAccessInputs);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: getReturnFlowTemperature()");
}
return ret;
}
eBurnerErrorState getBurnerError(void)
{
eBurnerErrorState ret = FAULT;
if (xSemaphoreTakeRecursive(xMutexAccessInputs, pdMS_TO_TICKS(5000)) == pdTRUE)
{
ret = sBurnerErrorState;
xSemaphoreGiveRecursive(xMutexAccessInputs);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: getBurnerError()");
}
return ret;
}