Files
smart-oil-heating-control-s…/main/safety.c
2026-01-10 13:32:49 +01:00

197 lines
6.5 KiB
C

/**
* @file safety.c
* @brief Implementation of safety monitoring module.
*/
#include "safety.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_log.h"
#include <string.h>
#include <math.h>
/** @brief Task interval in seconds. */
#define PERIODIC_INTERVAL 1U
/** @brief Grace period for unchanged sensor readings (seconds). */
#define SENSOR_GRACE_PERIOD (CONFIG_SENSOR_GRACE_PERIOD_MINUTES * 60U)
/** @brief Epsilon for float comparison. */
#define FLOAT_EPSILON 0.0001f
static const char *TAG = "safety";
static SemaphoreHandle_t xMutexAccessSafety = NULL;
/** @brief Sensor sanity check configurations. */
static sSensorSanityCheck sanityChecks[NUMBER_OF_SENSOR_SANITY_CHECKS] = {
{SENSOR_NO_ERROR, "chamber_temperature", {SENSOR_LIMIT_CHAMBER_MAX, SENSOR_LIMIT_CHAMBER_MIN}, 0.0f, 0U, getChamberTemperature},
{SENSOR_NO_ERROR, "outdoor_temperature", {SENSOR_LIMIT_OUTDOOR_MAX, SENSOR_LIMIT_OUTDOOR_MIN}, 0.0f, 0U, getOutdoorTemperature},
{SENSOR_NO_ERROR, "inlet_flow_temperature", {SENSOR_LIMIT_INLET_MAX, SENSOR_LIMIT_INLET_MIN}, 0.0f, 0U, getInletFlowTemperature},
{SENSOR_NO_ERROR, "return_flow_temperature", {SENSOR_LIMIT_RETURN_MAX, SENSOR_LIMIT_RETURN_MIN}, 0.0f, 0U, getReturnFlowTemperature}};
static eSafetyState sSafetyState = SAFETY_NO_ERROR;
/* Private function prototypes */
static void taskSafety(void *pvParameters);
static void checkSensorSanity(void);
static void setSafeState(void);
esp_err_t initSafety(void)
{
xMutexAccessSafety = xSemaphoreCreateRecursiveMutex();
if (xMutexAccessSafety == NULL)
{
ESP_LOGE(TAG, "Failed to create mutex");
return ESP_FAIL;
}
xSemaphoreGiveRecursive(xMutexAccessSafety);
BaseType_t taskCreated = xTaskCreate(
taskSafety,
"taskSafety",
4096,
NULL,
5,
NULL);
if (taskCreated != pdPASS)
{
ESP_LOGE(TAG, "Failed to create task");
return ESP_FAIL;
}
setSafeState();
ESP_LOGI(TAG, "Initialized successfully");
return ESP_OK;
}
/**
* @brief Safety monitoring task.
* @param pvParameters Task parameters (unused).
*/
static void taskSafety(void *pvParameters)
{
while (1)
{
vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS);
if (xSemaphoreTakeRecursive(xMutexAccessSafety, portMAX_DELAY) == pdTRUE)
{
checkSensorSanity();
if (sSafetyState != SAFETY_NO_ERROR)
{
setSafeState();
}
xSemaphoreGiveRecursive(xMutexAccessSafety);
}
}
}
/**
* @brief Check all sensor readings for sanity.
*/
static void checkSensorSanity(void)
{
sSafetyState = SAFETY_NO_ERROR;
for (int i = 0; i < NUMBER_OF_SENSOR_SANITY_CHECKS; i++)
{
// printf("Check sanity of sensor %s:\n", sanityChecks[i].name);
// printf(" state: %u\n", sanityChecks[i].state);
// printf(" Sensor Limits: Max = %.2f, Min = %.2f\n", sanityChecks[i].sSensorLimit.max, sanityChecks[i].sSensorLimit.min);
// printf(" Last Sensor Temperature: %.2f\n", sanityChecks[i].fSensorTemperatureLast);
const sMeasurement sCurrentMeasurement = sanityChecks[i].getSensor();
if (sCurrentMeasurement.state == MEASUREMENT_FAULT)
{
ESP_LOGE(TAG, "%s Sensor not found!", sanityChecks[i].name);
sanityChecks[i].state = SENSOR_NOT_FOUND;
sSafetyState = SAFETY_SENSOR_ERROR;
}
else
{
if (fabsf(sCurrentMeasurement.fCurrentValue - sanityChecks[i].fSensorTemperatureLast) < FLOAT_EPSILON)
{
sanityChecks[i].uUnchangedCounter++;
if (sanityChecks[i].uUnchangedCounter >= (SENSOR_GRACE_PERIOD / PERIODIC_INTERVAL))
{
ESP_LOGE(TAG, "%s Sensor reported unchanged value! %lf == %lf", sanityChecks[i].name, sCurrentMeasurement.fCurrentValue, sanityChecks[i].fSensorTemperatureLast);
sanityChecks[i].state = SENSOR_UNCHANGED;
sSafetyState = SAFETY_SENSOR_ERROR;
}
}
else
{
sanityChecks[i].uUnchangedCounter = 0U;
sanityChecks[i].fSensorTemperatureLast = sCurrentMeasurement.fCurrentValue;
if (sCurrentMeasurement.fCurrentValue > sanityChecks[i].sSensorLimit.max)
{
ESP_LOGE(TAG, "%s Sensor reported too high value! %lf > %lf", sanityChecks[i].name, sCurrentMeasurement.fCurrentValue, sanityChecks[i].sSensorLimit.max);
sanityChecks[i].state = SENSOR_TOO_HIGH;
sSafetyState = SAFETY_SENSOR_ERROR;
}
else if (sCurrentMeasurement.fCurrentValue < sanityChecks[i].sSensorLimit.min)
{
ESP_LOGE(TAG, "%s Sensor reported too low value! %lf < %lf", sanityChecks[i].name, sCurrentMeasurement.fCurrentValue, sanityChecks[i].sSensorLimit.min);
sanityChecks[i].state = SENSOR_TOO_LOW;
sSafetyState = SAFETY_SENSOR_ERROR;
}
else
{
sanityChecks[i].state = SENSOR_NO_ERROR;
}
}
}
}
}
/**
* @brief Set system to safe state (burner off, pump on).
*/
static void setSafeState(void)
{
setCirculationPumpState(ENABLED); // To cool down system
setBurnerState(DISABLED); // Deactivate burner
setSafetyControlState(DISABLED); // Disable power to Burner
}
void getSensorSanityStates(sSensorSanityCheck *pSensorSanityChecks)
{
if (xSemaphoreTakeRecursive(xMutexAccessSafety, pdMS_TO_TICKS(5000)) == pdTRUE)
{
for (size_t i = 0; i < NUMBER_OF_SENSOR_SANITY_CHECKS; i++)
{
// Copy only the needed attributes
pSensorSanityChecks[i].state = sanityChecks[i].state;
strncpy(pSensorSanityChecks[i].name, sanityChecks[i].name, MAX_ERROR_STRING_SIZE);
}
xSemaphoreGiveRecursive(xMutexAccessSafety);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: getSensorSanityStates()");
}
}
eSafetyState getSafetyState(void)
{
eSafetyState state = SAFETY_NO_ERROR;
if (xSemaphoreTakeRecursive(xMutexAccessSafety, pdMS_TO_TICKS(5000)) == pdTRUE)
{
state = sSafetyState;
xSemaphoreGiveRecursive(xMutexAccessSafety);
}
else
{
state = SAFETY_INTERNAL_ERROR;
ESP_LOGE(TAG, "Unable to take mutex: getSafetyState()");
}
return state;
}