smart-oil-heating-control-s.../main/metrics.c

333 lines
12 KiB
C

#include <string.h>
#include "esp_timer.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_wifi.h"
#include "esp_log.h"
#include <time.h>
#include <sys/time.h>
#include "metrics.h"
#include "outputs.h"
#include "inputs.h"
#include "safety.h"
#include "sntp.h"
#include "control.h"
static const char *TAG = "smart-oil-heater-control-system-metrics";
char caHtmlResponse[HTML_RESPONSE_SIZE];
SemaphoreHandle_t xMutexAccessMetricResponse = NULL;
static sMetric aMetrics[METRIC_MAX_COUNT];
static uint16_t u16MetricCounter = 0U;
void taskMetrics(void *pvParameters);
httpd_handle_t setup_server(void);
esp_err_t get_metrics_handler(httpd_req_t *req);
void initMetrics(void)
{
setup_server();
BaseType_t taskCreated = xTaskCreate(
taskMetrics, // Function to implement the task
"taskMetrics", // Task name
32768, // Stack size (in words, not bytes)
NULL, // Parameters to the task function (none in this case)
5, // Task priority (higher number = higher priority)
NULL // Task handle (optional)
);
if (taskCreated == pdPASS)
{
ESP_LOGI(TAG, "Task created successfully!");
}
else
{
ESP_LOGE(TAG, "Failed to create task");
}
}
void taskMetrics(void *pvParameters)
{
while (1)
{
vTaskDelay(1000U / portTICK_PERIOD_MS);
u16MetricCounter = 0U;
// Burner Error State
strcpy(aMetrics[u16MetricCounter].caMetricName, "burner_fault_pending");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getBurnerError();
u16MetricCounter++;
// Circulation Pump State
if (getCirculationPumpState() == ENABLED)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "circulation_pump_enabled");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = 1U;
u16MetricCounter++;
}
else
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "circulation_pump_enabled");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = 0U;
u16MetricCounter++;
}
// Burner State
if (getBurnerState() == ENABLED)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "burner_enabled");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = 1U;
u16MetricCounter++;
}
else
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "burner_enabled");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = 0U;
u16MetricCounter++;
}
// Safety Contact State
if (getSafetyControlState() == ENABLED)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "safety_contact_enabled");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = 1U;
u16MetricCounter++;
}
else
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "safety_contact_enabled");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = 0U;
u16MetricCounter++;
}
// Chamber Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().fCurrentValue;
u16MetricCounter++;
// Chamber Temperature Average 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average10s.fValue;
u16MetricCounter++;
// Chamber Temperature Average 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average60s.fValue;
u16MetricCounter++;
// Chamber Temperature Predict 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_pred10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().predict10s.fValue;
u16MetricCounter++;
// Chamber Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().predict60s.fValue;
u16MetricCounter++;
// Inlet Flow Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().fCurrentValue;
u16MetricCounter++;
// Inlet Flow Temperature Average 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average10s.fValue;
u16MetricCounter++;
// Inlet Flow Temperature Average 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average60s.fValue;
u16MetricCounter++;
// Outdoor Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().fCurrentValue;
u16MetricCounter++;
// Outdoor Temperature Average 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average10s.fValue;
u16MetricCounter++;
// Outdoor Temperature Average 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average60s.fValue;
u16MetricCounter++;
// Return Flow Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().fCurrentValue;
u16MetricCounter++;
// Return Flow Temperature Average 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average10s.fValue;
u16MetricCounter++;
// Return Flow Temperature Average 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average60s.fValue;
u16MetricCounter++;
// Sensor State
sSensorSanityCheck aChecks[NUMBER_OF_SENSOR_SANITY_CHECKS];
getSensorSanityStates(aChecks);
for (size_t i = 0; i < NUMBER_OF_SENSOR_SANITY_CHECKS; i++)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, aChecks[i].name);
strcat(aMetrics[u16MetricCounter].caMetricName, "_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = aChecks[i].state;
u16MetricCounter++;
}
// Safety State
strcpy(aMetrics[u16MetricCounter].caMetricName, "safety_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getSafetyState();
u16MetricCounter++;
// Control State
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getControlState();
u16MetricCounter++;
// SNTP State
strcpy(aMetrics[u16MetricCounter].caMetricName, "sntp_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getSntpState();
u16MetricCounter++;
// System Time
time_t now;
time(&now);
strcpy(aMetrics[u16MetricCounter].caMetricName, "system_unixtime");
aMetrics[u16MetricCounter].type = INTEGER_64;
aMetrics[u16MetricCounter].i64MetricValue = now;
u16MetricCounter++;
// Uptime
strcpy(aMetrics[u16MetricCounter].caMetricName, "uptime_seconds");
aMetrics[u16MetricCounter].type = INTEGER_64;
aMetrics[u16MetricCounter].i64MetricValue = (esp_timer_get_time() / 1000000U);
u16MetricCounter++;
// Wifi RSSI
wifi_ap_record_t ap;
esp_wifi_sta_get_ap_info(&ap);
strcpy(aMetrics[u16MetricCounter].caMetricName, "wifi_rssi");
aMetrics[u16MetricCounter].type = INTEGER_64;
aMetrics[u16MetricCounter].i64MetricValue = ap.rssi;
u16MetricCounter++;
vSetMetrics(aMetrics, u16MetricCounter);
}
}
void vSetMetrics(sMetric *paMetrics, uint16_t u16Size)
{
if (xSemaphoreTakeRecursive(xMutexAccessMetricResponse, pdMS_TO_TICKS(5000)) == pdTRUE)
{
memset(caHtmlResponse, 0U, strlen(caHtmlResponse));
for (uint16_t u16Index = 0U; u16Index < u16Size; u16Index++)
{
char caValueBuffer[64];
switch (paMetrics[u16Index].type)
{
case FLOAT:
sprintf(caValueBuffer, " %f", paMetrics[u16Index].fMetricValue);
break;
case INTEGER_64:
sprintf(caValueBuffer, " %lli", paMetrics[u16Index].i64MetricValue);
break;
case INTEGER_U8:
sprintf(caValueBuffer, " %u", paMetrics[u16Index].u8MetricValue);
break;
default:
break;
}
// printf("%s\n", paMetrics[u16Index].caMetricName);
// printf("%s\n", caValueBuffer);
strcat(caHtmlResponse, paMetrics[u16Index].caMetricName);
strcat(caHtmlResponse, caValueBuffer);
strcat(caHtmlResponse, "\n");
}
xSemaphoreGiveRecursive(xMutexAccessMetricResponse);
}
else
{
ESP_LOGI(TAG, "[SET] Unable to obtain mutex for metric response");
}
}
esp_err_t get_metrics_handler(httpd_req_t *req)
{
if (xSemaphoreTakeRecursive(xMutexAccessMetricResponse, pdMS_TO_TICKS(5000)) == pdTRUE)
{
esp_err_t err = httpd_resp_send(req, caHtmlResponse, HTTPD_RESP_USE_STRLEN);
xSemaphoreGiveRecursive(xMutexAccessMetricResponse);
return err;
}
else
{
ESP_LOGI(TAG, "[GET] Unable to obtain mutex for metric response");
return httpd_resp_send(req, 0, 0);
}
}
httpd_handle_t setup_server(void)
{
httpd_config_t config = HTTPD_DEFAULT_CONFIG();
config.server_port = 9100;
httpd_handle_t server = NULL;
httpd_uri_t uri_get = {
.uri = "/metrics",
.method = HTTP_GET,
.handler = get_metrics_handler,
.user_ctx = NULL};
xMutexAccessMetricResponse = xSemaphoreCreateRecursiveMutex();
if (xMutexAccessMetricResponse == NULL)
{
ESP_LOGE(TAG, "Unable to create mutex for metric response");
}
xSemaphoreGiveRecursive(xMutexAccessMetricResponse);
if (httpd_start(&server, &config) == ESP_OK)
{
httpd_register_uri_handler(server, &uri_get);
}
return server;
}