smart-oil-heating-control-s.../main/safety.c

159 lines
5.7 KiB
C

#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_log.h"
#include <string.h>
#include "safety.h"
#define PERIODIC_INTERVAL 1U // run safety checks every 1sec
#define SENSOR_GRACE_PERIOD (60U * 30U) // period that a sensor can report the same reading in seconds
static const char *TAG = "smart-oil-heater-control-system-safety";
static SemaphoreHandle_t xMutexAccessSafety = NULL;
static sSensorSanityCheck sanityChecks[NUMBER_OF_SENSOR_SANITY_CHECKS] = {
{SENSOR_NO_ERROR, "chamber_temperature", {95.0f, -10.0f}, 0.0f, 0U, getChamberTemperature},
{SENSOR_NO_ERROR, "outdoor_temperature", {45.0f, -20.0f}, 0.0f, 0U, getOutdoorTemperature},
{SENSOR_NO_ERROR, "inlet_flow_temperature", {95.0f, -10.0f}, 0.0f, 0U, getInletFlowTemperature},
{SENSOR_NO_ERROR, "return_flow_temperature", {95.0f, -10.0f}, 0.0f, 0U, getReturnFlowTemperature}};
static eSafetyState sSafetyState = SAFETY_NO_ERROR;
void taskSafety(void *pvParameters);
void checkSensorSanity(void);
void setSafeState(void);
void initSafety(void)
{
xMutexAccessSafety = xSemaphoreCreateRecursiveMutex();
if (xMutexAccessSafety == NULL)
{
ESP_LOGE(TAG, "Unable to create mutex");
}
xSemaphoreGiveRecursive(xMutexAccessSafety);
BaseType_t taskCreated = xTaskCreate(
taskSafety, // Function to implement the task
"taskSafety", // Task name
4096, // Stack size (in words, not bytes)
NULL, // Parameters to the task function (none in this case)
5, // Task priority (higher number = higher priority)
NULL // Task handle (optional)
);
if (taskCreated == pdPASS)
{
ESP_LOGI(TAG, "Task created successfully!");
}
else
{
ESP_LOGE(TAG, "Failed to create task");
}
setSafeState(); // Set inital state
}
void taskSafety(void *pvParameters)
{
while (1)
{
vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS);
if (xSemaphoreTakeRecursive(xMutexAccessSafety, portMAX_DELAY) == pdTRUE)
{
checkSensorSanity();
if (sSafetyState != SAFETY_NO_ERROR)
{
setSafeState();
}
xSemaphoreGiveRecursive(xMutexAccessSafety);
}
}
}
void checkSensorSanity(void)
{
sSafetyState = SAFETY_NO_ERROR;
for (int i = 0; i < NUMBER_OF_SENSOR_SANITY_CHECKS; i++)
{
// printf("Check sanity of sensor %s:\n", sanityChecks[i].name);
// printf(" state: %u\n", sanityChecks[i].state);
// printf(" Sensor Limits: Max = %.2f, Min = %.2f\n", sanityChecks[i].sSensorLimit.max, sanityChecks[i].sSensorLimit.min);
// printf(" Last Sensor Temperature: %.2f\n", sanityChecks[i].fSensorTemperatureLast);
const sMeasurement sCurrentMeasurement = sanityChecks[i].getSensor();
if (sCurrentMeasurement.state == MEASUREMENT_FAULT)
{
ESP_LOGE(TAG, "%s Sensor not found!", sanityChecks[i].name);
sanityChecks[i].state = SENSOR_NOT_FOUND;
sSafetyState = SAFETY_SENSOR_ERROR;
}
else
{
if (sCurrentMeasurement.fCurrentValue == sanityChecks[i].fSensorTemperatureLast)
{
sanityChecks[i].uUnchangedCounter++;
if (sanityChecks[i].uUnchangedCounter >= (SENSOR_GRACE_PERIOD / PERIODIC_INTERVAL))
{
ESP_LOGE(TAG, "%s Sensor reported unchanged value! %lf == %lf", sanityChecks[i].name, sCurrentMeasurement.fCurrentValue, sanityChecks[i].fSensorTemperatureLast);
sanityChecks[i].state = SENSOR_UNCHANGED;
sSafetyState = SAFETY_SENSOR_ERROR;
}
}
else
{
sanityChecks[i].fSensorTemperatureLast = sCurrentMeasurement.fCurrentValue;
if (sCurrentMeasurement.fCurrentValue > sanityChecks[i].sSensorLimit.max)
{
ESP_LOGE(TAG, "%s Sensor reported too high value! %lf > %lf", sanityChecks[i].name, sCurrentMeasurement.fCurrentValue, sanityChecks[i].sSensorLimit.max);
sanityChecks[i].state = SENSOR_TOO_HIGH;
sSafetyState = SAFETY_SENSOR_ERROR;
}
else if (sCurrentMeasurement.fCurrentValue < sanityChecks[i].sSensorLimit.min)
{
ESP_LOGE(TAG, "%s Sensor reported too low value! %lf < %lf", sanityChecks[i].name, sCurrentMeasurement.fCurrentValue, sanityChecks[i].sSensorLimit.min);
sanityChecks[i].state = SENSOR_TOO_LOW;
sSafetyState = SAFETY_SENSOR_ERROR;
}
else
{
sanityChecks[i].uUnchangedCounter = 0U;
sanityChecks[i].state = SENSOR_NO_ERROR;
}
}
}
// printf(" state: %u\n", sanityChecks[i].state);
}
}
void setSafeState(void)
{
setCirculationPumpState(ENABLED); // To cool down system
setBurnerState(DISABLED); // Deactivate burner
setSafetyControlState(DISABLED); // Disable power to Burner
}
void getSensorSanityStates(sSensorSanityCheck *pSensorSanityChecks)
{
if (xSemaphoreTakeRecursive(xMutexAccessSafety, pdMS_TO_TICKS(5000)) == pdTRUE)
{
for (size_t i = 0; i < NUMBER_OF_SENSOR_SANITY_CHECKS; i++)
{
// Copy only the needed attributes
pSensorSanityChecks[i].state = sanityChecks[i].state;
strcpy(pSensorSanityChecks[i].name, sanityChecks[i].name);
}
xSemaphoreGiveRecursive(xMutexAccessSafety);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: getSensorSanityStates()");
}
}
eSafetyState getSafetyState(void)
{
return sSafetyState;
}