Convert vector images (SVG) to gcode for usage with a laser plotter.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
svg2gcode/bezmisc.py

288 lines
9.1 KiB

#!/usr/bin/env python
'''
Copyright (C) 2010 Nick Drobchenko, nick@cnc-club.ru
Copyright (C) 2005 Aaron Spike, aaron@ekips.org
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
'''
import math, cmath
def rootWrapper(a,b,c,d):
if a:
# Monics formula see http://en.wikipedia.org/wiki/Cubic_function#Monic_formula_of_roots
a,b,c = (b/a, c/a, d/a)
m = 2.0*a**3 - 9.0*a*b + 27.0*c
k = a**2 - 3.0*b
n = m**2 - 4.0*k**3
w1 = -.5 + .5*cmath.sqrt(-3.0)
w2 = -.5 - .5*cmath.sqrt(-3.0)
if n < 0:
m1 = pow(complex((m+cmath.sqrt(n))/2),1./3)
n1 = pow(complex((m-cmath.sqrt(n))/2),1./3)
else:
if m+math.sqrt(n) < 0:
m1 = -pow(-(m+math.sqrt(n))/2,1./3)
else:
m1 = pow((m+math.sqrt(n))/2,1./3)
if m-math.sqrt(n) < 0:
n1 = -pow(-(m-math.sqrt(n))/2,1./3)
else:
n1 = pow((m-math.sqrt(n))/2,1./3)
x1 = -1./3 * (a + m1 + n1)
x2 = -1./3 * (a + w1*m1 + w2*n1)
x3 = -1./3 * (a + w2*m1 + w1*n1)
return (x1,x2,x3)
elif b:
det=c**2.0-4.0*b*d
if det:
return (-c+cmath.sqrt(det))/(2.0*b),(-c-cmath.sqrt(det))/(2.0*b)
else:
return -c/(2.0*b),
elif c:
return 1.0*(-d/c),
return ()
def bezierparameterize(xxx_todo_changeme):
#parametric bezier
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme
x0=bx0
y0=by0
cx=3*(bx1-x0)
bx=3*(bx2-bx1)-cx
ax=bx3-x0-cx-bx
cy=3*(by1-y0)
by=3*(by2-by1)-cy
ay=by3-y0-cy-by
return ax,ay,bx,by,cx,cy,x0,y0
#ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
def linebezierintersect(xxx_todo_changeme1, xxx_todo_changeme2):
#parametric line
((lx1,ly1),(lx2,ly2)) = xxx_todo_changeme1
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme2
dd=lx1
cc=lx2-lx1
bb=ly1
aa=ly2-ly1
if aa:
coef1=cc/aa
coef2=1
else:
coef1=1
coef2=aa/cc
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
#cubic intersection coefficients
a=coef1*ay-coef2*ax
b=coef1*by-coef2*bx
c=coef1*cy-coef2*cx
d=coef1*(y0-bb)-coef2*(x0-dd)
roots = rootWrapper(a,b,c,d)
retval = []
for i in roots:
if type(i) is complex and i.imag==0:
i = i.real
if type(i) is not complex and 0<=i<=1:
retval.append(bezierpointatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),i))
return retval
def bezierpointatt(xxx_todo_changeme3,t):
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme3
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
x=ax*(t**3)+bx*(t**2)+cx*t+x0
y=ay*(t**3)+by*(t**2)+cy*t+y0
return x,y
def bezierslopeatt(xxx_todo_changeme4,t):
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme4
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
dx=3*ax*(t**2)+2*bx*t+cx
dy=3*ay*(t**2)+2*by*t+cy
return dx,dy
def beziertatslope(xxx_todo_changeme5, xxx_todo_changeme6):
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme5
(dy,dx) = xxx_todo_changeme6
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
#quadratic coefficents of slope formula
if dx:
slope = 1.0*(dy/dx)
a=3*ay-3*ax*slope
b=2*by-2*bx*slope
c=cy-cx*slope
elif dy:
slope = 1.0*(dx/dy)
a=3*ax-3*ay*slope
b=2*bx-2*by*slope
c=cx-cy*slope
else:
return []
roots = rootWrapper(0,a,b,c)
retval = []
for i in roots:
if type(i) is complex and i.imag==0:
i = i.real
if type(i) is not complex and 0<=i<=1:
retval.append(i)
return retval
def tpoint(xxx_todo_changeme7, xxx_todo_changeme8,t):
(x1,y1) = xxx_todo_changeme7
(x2,y2) = xxx_todo_changeme8
return x1+t*(x2-x1),y1+t*(y2-y1)
def beziersplitatt(xxx_todo_changeme9,t):
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme9
m1=tpoint((bx0,by0),(bx1,by1),t)
m2=tpoint((bx1,by1),(bx2,by2),t)
m3=tpoint((bx2,by2),(bx3,by3),t)
m4=tpoint(m1,m2,t)
m5=tpoint(m2,m3,t)
m=tpoint(m4,m5,t)
return ((bx0,by0),m1,m4,m),(m,m5,m3,(bx3,by3))
'''
Approximating the arc length of a bezier curve
according to <http://www.cit.gu.edu.au/~anthony/info/graphics/bezier.curves>
if:
L1 = |P0 P1| +|P1 P2| +|P2 P3|
L0 = |P0 P3|
then:
L = 1/2*L0 + 1/2*L1
ERR = L1-L0
ERR approaches 0 as the number of subdivisions (m) increases
2^-4m
Reference:
Jens Gravesen <gravesen@mat.dth.dk>
"Adaptive subdivision and the length of Bezier curves"
mat-report no. 1992-10, Mathematical Institute, The Technical
University of Denmark.
'''
def pointdistance(xxx_todo_changeme10, xxx_todo_changeme11):
(x1,y1) = xxx_todo_changeme10
(x2,y2) = xxx_todo_changeme11
return math.sqrt(((x2 - x1) ** 2) + ((y2 - y1) ** 2))
def Gravesen_addifclose(b, len, error = 0.001):
box = 0
for i in range(1,4):
box += pointdistance(b[i-1], b[i])
chord = pointdistance(b[0], b[3])
if (box - chord) > error:
first, second = beziersplitatt(b, 0.5)
Gravesen_addifclose(first, len, error)
Gravesen_addifclose(second, len, error)
else:
len[0] += (box / 2.0) + (chord / 2.0)
def bezierlengthGravesen(b, error = 0.001):
len = [0]
Gravesen_addifclose(b, len, error)
return len[0]
# balf = Bezier Arc Length Function
balfax,balfbx,balfcx,balfay,balfby,balfcy = 0,0,0,0,0,0
def balf(t):
retval = (balfax*(t**2) + balfbx*t + balfcx)**2 + (balfay*(t**2) + balfby*t + balfcy)**2
return math.sqrt(retval)
def Simpson(f, a, b, n_limit, tolerance):
n = 2
multiplier = (b - a)/6.0
endsum = f(a) + f(b)
interval = (b - a)/2.0
asum = 0.0
bsum = f(a + interval)
est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
est0 = 2.0 * est1
#print multiplier, endsum, interval, asum, bsum, est1, est0
while n < n_limit and abs(est1 - est0) > tolerance:
n *= 2
multiplier /= 2.0
interval /= 2.0
asum += bsum
bsum = 0.0
est0 = est1
for i in range(1, n, 2):
bsum += f(a + (i * interval))
est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
#print multiplier, endsum, interval, asum, bsum, est1, est0
return est1
def bezierlengthSimpson(xxx_todo_changeme12, tolerance = 0.001):
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme12
global balfax,balfbx,balfcx,balfay,balfby,balfcy
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy
return Simpson(balf, 0.0, 1.0, 4096, tolerance)
def beziertatlength(xxx_todo_changeme13, l = 0.5, tolerance = 0.001):
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme13
global balfax,balfbx,balfcx,balfay,balfby,balfcy
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy
t = 1.0
tdiv = t
curlen = Simpson(balf, 0.0, t, 4096, tolerance)
targetlen = l * curlen
diff = curlen - targetlen
while abs(diff) > tolerance:
tdiv /= 2.0
if diff < 0:
t += tdiv
else:
t -= tdiv
curlen = Simpson(balf, 0.0, t, 4096, tolerance)
diff = curlen - targetlen
return t
#default bezier length method
bezierlength = bezierlengthSimpson
if __name__ == '__main__':
# import timing
#print linebezierintersect(((,),(,)),((,),(,),(,),(,)))
#print linebezierintersect(((0,1),(0,-1)),((-1,0),(-.5,0),(.5,0),(1,0)))
tol = 0.00000001
curves = [((0,0),(1,5),(4,5),(5,5)),
((0,0),(0,0),(5,0),(10,0)),
((0,0),(0,0),(5,1),(10,0)),
((-10,0),(0,0),(10,0),(10,10)),
((15,10),(0,0),(10,0),(-5,10))]
'''
for curve in curves:
timing.start()
g = bezierlengthGravesen(curve,tol)
timing.finish()
gt = timing.micro()
timing.start()
s = bezierlengthSimpson(curve,tol)
timing.finish()
st = timing.micro()
print g, gt
print s, st
'''
for curve in curves:
print(beziertatlength(curve,0.5))
# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 encoding=utf-8 textwidth=99

Du besuchst diese Seite mit einem veralteten IPv4-Internetzugang. Möglicherweise treten in Zukunft Probleme mit der Erreichbarkeit und Performance auf. Bitte frage deinen Internetanbieter oder Netzwerkadministrator nach IPv6-Unterstützung.
You are visiting this site with an outdated IPv4 internet access. You may experience problems with accessibility and performance in the future. Please ask your ISP or network administrator for IPv6 support.
Weitere Infos | More Information
Klicke zum schließen | Click to close