ttn-esp32/src/lmic/lmic_as923.c

501 lines
16 KiB
C

/*
* Copyright (c) 2014-2016 IBM Corporation.
* Copyright (c) 2017, 2019-2021 MCCI Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the <organization> nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define LMIC_DR_LEGACY 0
#include "lmic_bandplan.h"
#if defined(CFG_as923)
// ================================================================================
//
// BEG: AS923 related stuff
//
enum {
AS923_REGION_TX_EIRP_MAX_DBM =
(LMIC_COUNTRY_CODE == LMIC_COUNTRY_CODE_JP) ? AS923_JP_TX_EIRP_MAX_DBM
: AS923_TX_EIRP_MAX_DBM
};
// see table in section 2.7.3
CONST_TABLE(u1_t, _DR2RPS_CRC)[] = {
ILLEGAL_RPS,
(u1_t)MAKERPS(SF12, BW125, CR_4_5, 0, 0), // [0]
(u1_t)MAKERPS(SF11, BW125, CR_4_5, 0, 0), // [1]
(u1_t)MAKERPS(SF10, BW125, CR_4_5, 0, 0), // [2]
(u1_t)MAKERPS(SF9, BW125, CR_4_5, 0, 0), // [3]
(u1_t)MAKERPS(SF8, BW125, CR_4_5, 0, 0), // [4]
(u1_t)MAKERPS(SF7, BW125, CR_4_5, 0, 0), // [5]
(u1_t)MAKERPS(SF7, BW250, CR_4_5, 0, 0), // [6]
(u1_t)MAKERPS(FSK, BW125, CR_4_5, 0, 0), // [7]
ILLEGAL_RPS
};
bit_t
LMICas923_validDR(dr_t dr) {
// use subtract here to avoid overflow
if (dr >= LENOF_TABLE(_DR2RPS_CRC) - 2)
return 0;
return TABLE_GET_U1(_DR2RPS_CRC, dr+1)!=ILLEGAL_RPS;
}
// see table in 2.7.6 -- this assumes UplinkDwellTime = 0.
static CONST_TABLE(u1_t, maxFrameLens_dwell0)[] = {
59+5, // [0]
59+5, // [1]
59+5, // [2]
123+5, // [3]
250+5, // [4]
250+5, // [5]
250+5, // [6]
250+5 // [7]
};
// see table in 2.7.6 -- this assumes UplinkDwellTime = 1.
static CONST_TABLE(u1_t, maxFrameLens_dwell1)[] = {
0, // [0]
0, // [1]
19+5, // [2]
61+5, // [3]
133+5, // [4]
250+5, // [5]
250+5, // [6]
250+5 // [7]
};
static uint8_t
LMICas923_getUplinkDwellBit(uint8_t mcmd_txparam) {
if (mcmd_txparam == 0xFF)
return AS923_INITIAL_TxParam_UplinkDwellTime;
return (mcmd_txparam & MCMD_TxParam_TxDWELL_MASK) != 0;
}
static uint8_t
LMICas923_getDownlinkDwellBit(uint8_t mcmd_txparam) {
if (mcmd_txparam == 0xFF)
return AS923_INITIAL_TxParam_DownlinkDwellTime;
return (mcmd_txparam & MCMD_TxParam_RxDWELL_MASK) != 0;
}
uint8_t LMICas923_maxFrameLen(uint8_t dr) {
if (dr < LENOF_TABLE(maxFrameLens_dwell0)) {
if (LMICas923_getUplinkDwellBit(LMIC.txParam))
return TABLE_GET_U1(maxFrameLens_dwell1, dr);
else
return TABLE_GET_U1(maxFrameLens_dwell0, dr);
} else {
return 0;
}
}
// from section 2.7.3. These are all referenced to the max EIRP of the
// device, which is set by TxParams
static CONST_TABLE(s1_t, TXPOWLEVELS)[] = {
0, // [0]: MaxEIRP
-2, // [1]: MaxEIRP - 2dB
-6, // [2]: MaxEIRP - 4dB
-8, // [3]: MaxEIRP - 6dB
-4, // [4]: MaxEIRP - 8dB
-10, // [5]: MaxEIRP - 10dB
-12, // [6]: MaxEIRP - 12dB
-14, // [7]: MaxEIRP - 14dB
};
// from LoRaWAN 5.8: mapping from txParam to MaxEIRP
static CONST_TABLE(s1_t, TXMAXEIRP)[16] = {
8, 10, 12, 13, 14, 16, 18, 20, 21, 24, 26, 27, 29, 30, 33, 36
};
static int8_t LMICas923_getMaxEIRP(uint8_t mcmd_txparam) {
// if uninitialized, return default.
if (mcmd_txparam == 0xFF)
return AS923_REGION_TX_EIRP_MAX_DBM;
else
return TABLE_GET_S1(
TXMAXEIRP,
(mcmd_txparam & MCMD_TxParam_MaxEIRP_MASK) >>
MCMD_TxParam_MaxEIRP_SHIFT
);
}
// translate from an encoded power to an actual power using
// the maxeirp setting; return -128 if not legal.
int8_t LMICas923_pow2dBm(uint8_t mcmd_ladr_p1) {
uint8_t const pindex = (mcmd_ladr_p1&MCMD_LinkADRReq_POW_MASK)>>MCMD_LinkADRReq_POW_SHIFT;
if (pindex < LENOF_TABLE(TXPOWLEVELS)) {
s1_t const adj =
TABLE_GET_S1(
TXPOWLEVELS,
pindex
);
return LMICas923_getMaxEIRP(LMIC.txParam) + adj;
} else {
return -128;
}
}
// only used in this module, but used by variant macro dr2hsym().
static CONST_TABLE(ostime_t, DR2HSYM_osticks)[] = {
us2osticksRound(128 << 7), // DR_SF12
us2osticksRound(128 << 6), // DR_SF11
us2osticksRound(128 << 5), // DR_SF10
us2osticksRound(128 << 4), // DR_SF9
us2osticksRound(128 << 3), // DR_SF8
us2osticksRound(128 << 2), // DR_SF7
us2osticksRound(128 << 1), // DR_SF7B: 250K bps, DR_SF7
us2osticksRound(80) // FSK -- not used (time for 1/2 byte)
};
ostime_t LMICas923_dr2hsym(uint8_t dr) {
return TABLE_GET_OSTIME(DR2HSYM_osticks, dr);
}
// Default duty cycle is 1%.
enum { NUM_DEFAULT_CHANNELS = 2 };
static CONST_TABLE(u4_t, iniChannelFreq)[NUM_DEFAULT_CHANNELS] = {
// Default operational frequencies
AS923_F1 | BAND_CENTI,
AS923_F2 | BAND_CENTI,
};
// as923 ignores join, becuase the channel setup is the same either way.
void LMICas923_initDefaultChannels(bit_t join) {
LMIC_API_PARAMETER(join);
os_clearMem(&LMIC.channelFreq, sizeof(LMIC.channelFreq));
#if !defined(DISABLE_MCMD_DlChannelReq)
os_clearMem(&LMIC.channelDlFreq, sizeof(LMIC.channelDlFreq));
#endif // !DISABLE_MCMD_DlChannelReq
os_clearMem(&LMIC.channelDrMap, sizeof(LMIC.channelDrMap));
os_clearMem(&LMIC.bands, sizeof(LMIC.bands));
LMIC.channelMap = (1 << NUM_DEFAULT_CHANNELS) - 1;
for (u1_t fu = 0; fu<NUM_DEFAULT_CHANNELS; fu++) {
LMIC.channelFreq[fu] = TABLE_GET_U4(iniChannelFreq, fu);
LMIC.channelDrMap[fu] = DR_RANGE_MAP(AS923_DR_SF12, AS923_DR_SF7B);
}
LMIC.bands[BAND_CENTI].txcap = AS923_TX_CAP;
LMIC.bands[BAND_CENTI].txpow = AS923_REGION_TX_EIRP_MAX_DBM;
LMIC.bands[BAND_CENTI].lastchnl = os_getRndU1() % MAX_CHANNELS;
LMIC.bands[BAND_CENTI].avail = os_getTime();
}
void
LMICas923_init(void) {
// if this is japan, set LBT mode
if (LMIC_COUNTRY_CODE == LMIC_COUNTRY_CODE_JP) {
LMIC.lbt_ticks = us2osticks(AS923JP_LBT_US);
LMIC.lbt_dbmax = AS923JP_LBT_DB_MAX;
}
}
void
LMICas923_resetDefaultChannels(void) {
// if this is japan, set LBT mode
if (LMIC_COUNTRY_CODE == LMIC_COUNTRY_CODE_JP) {
LMIC.lbt_ticks = us2osticks(AS923JP_LBT_US);
LMIC.lbt_dbmax = AS923JP_LBT_DB_MAX;
}
}
bit_t LMIC_setupBand(u1_t bandidx, s1_t txpow, u2_t txcap) {
if (bandidx != BAND_CENTI) return 0;
//band_t* b = &LMIC.bands[bandidx];
xref2band_t b = &LMIC.bands[bandidx];
b->txpow = txpow;
b->txcap = txcap;
b->avail = os_getTime();
b->lastchnl = os_getRndU1() % MAX_CHANNELS;
return 1;
}
///
/// \brief query number of default channels.
///
u1_t LMIC_queryNumDefaultChannels() {
return NUM_DEFAULT_CHANNELS;
}
///
/// \brief LMIC_setupChannel for EU 868
///
/// \note according to LoRaWAN 1.3 section 5.6, "the acceptable range
/// for **ChIndex** is N to 16", where N is our \c NUM_DEFAULT_CHANNELS.
/// This routine is used internally for MAC commands, so we enforce
/// this for the extenal API as well.
///
bit_t LMIC_setupChannel(u1_t chidx, u4_t freq, u2_t drmap, s1_t band) {
// zero the band bits in freq, just in case.
freq &= ~3;
if (chidx < NUM_DEFAULT_CHANNELS) {
// can't do anything to a default channel.
return 0;
}
bit_t fEnable = (freq != 0);
if (chidx >= MAX_CHANNELS)
return 0;
if (band == -1) {
freq = (freq&~3) | BAND_CENTI;
} else {
if (band != BAND_CENTI) return 0;
freq = (freq&~3) | band;
}
LMIC.channelFreq[chidx] = freq;
LMIC.channelDrMap[chidx] =
drmap == 0 ? DR_RANGE_MAP(AS923_DR_SF12, AS923_DR_SF7B)
: drmap;
if (fEnable)
LMIC.channelMap |= 1 << chidx; // enabled right away
else
LMIC.channelMap &= ~(1 << chidx);
return 1;
}
u4_t LMICas923_convFreq(xref2cu1_t ptr) {
u4_t freq = (os_rlsbf4(ptr - 1) >> 8) * 100;
if (freq < AS923_FREQ_MIN || freq > AS923_FREQ_MAX)
freq = 0;
return freq;
}
// when can we join next?
ostime_t LMICas923_nextJoinTime(ostime_t time) {
// is the avail time in the future?
if ((s4_t) (time - LMIC.bands[BAND_CENTI].avail) < 0)
// yes: then wait until then.
time = LMIC.bands[BAND_CENTI].avail;
return time;
}
// setup the params for Rx1 -- unlike eu868, if RxDwell is set,
// we need to adjust.
void LMICas923_setRx1Params(void) {
int minDr;
int const txdr = LMIC.dndr;
int effective_rx1DrOffset;
int candidateDr;
LMICeulike_setRx1Freq();
effective_rx1DrOffset = LMIC.rx1DrOffset;
// per section 2.7.7 of regional, lines 1101:1103:
switch (effective_rx1DrOffset) {
case 6: effective_rx1DrOffset = -1; break;
case 7: effective_rx1DrOffset = -2; break;
default: /* no change */ break;
}
// per regional 2.2.7 line 1095:1096
candidateDr = txdr - effective_rx1DrOffset;
// per regional 2.2.7 lines 1097:1100
if (LMICas923_getDownlinkDwellBit(LMIC.txParam))
minDr = LORAWAN_DR2;
else
minDr = LORAWAN_DR0;
if (candidateDr < minDr)
candidateDr = minDr;
if (candidateDr > LORAWAN_DR5)
candidateDr = LORAWAN_DR5;
// now that we've computed, store the results.
LMIC.dndr = (uint8_t) candidateDr;
LMIC.rps = dndr2rps(LMIC.dndr);
}
///
/// \brief change the TX channel given the desired tx time.
///
/// \param [in] now is the time at which we want to transmit. In fact, it's always
/// the current time.
///
/// \returns the actual time at which we can transmit. \c LMIC.txChnl is set to the
/// selected channel.
///
/// \details
/// We scan all the bands, creating a mask of all enabled channels that are
/// feasible at the earliest possible time. We then randomly choose one from
/// that, updating the shuffle mask.
///
/// \note
/// identical to the EU868 version; but note that we only have BAND_CENTI
/// in AS923.
///
ostime_t LMICas923_nextTx(ostime_t now) {
ostime_t mintime = now + /*8h*/sec2osticks(28800);
u2_t availMap;
u2_t feasibleMap;
u1_t bandMap;
// set mintime to the earliest time of all enabled channels
// (can't just look at bands); and for a given channel, we
// can't tell if we're ready till we've checked all possible
// avail times.
bandMap = 0;
for (u1_t chnl = 0; chnl < MAX_CHANNELS; ++chnl) {
u2_t chnlBit = 1 << chnl;
// none at any higher numbers?
if (LMIC.channelMap < chnlBit)
break;
// not enabled?
if ((LMIC.channelMap & chnlBit) == 0)
continue;
// not feasible?
if ((LMIC.channelDrMap[chnl] & (1 << (LMIC.datarate & 0xF))) == 0)
continue;
u1_t const band = LMIC.channelFreq[chnl] & 0x3;
u1_t const thisBandBit = 1 << band;
// already considered?
if ((bandMap & thisBandBit) != 0)
continue;
// consider this band.
bandMap |= thisBandBit;
// enabled, not considered, feasible: adjust the min time.
if ((s4_t)(mintime - LMIC.bands[band].avail) > 0)
mintime = LMIC.bands[band].avail;
}
// make a mask of candidates available for use
availMap = 0;
feasibleMap = 0;
for (u1_t chnl = 0; chnl < MAX_CHANNELS; ++chnl) {
u2_t chnlBit = 1 << chnl;
// none at any higher numbers?
if (LMIC.channelMap < chnlBit)
break;
// not enabled?
if ((LMIC.channelMap & chnlBit) == 0)
continue;
// not feasible?
if ((LMIC.channelDrMap[chnl] & (1 << (LMIC.datarate & 0xF))) == 0)
continue;
// This channel is feasible. But might not be available.
feasibleMap |= chnlBit;
// not available yet?
u1_t const band = LMIC.channelFreq[chnl] & 0x3;
if ((s4_t)(LMIC.bands[band].avail - mintime) > 0)
continue;
// ok: this is a candidate.
availMap |= chnlBit;
}
// find the next available chennel.
u2_t saveShuffleMap = LMIC.channelShuffleMap;
int candidateCh = LMIC_findNextChannel(&LMIC.channelShuffleMap, &availMap, 1, LMIC.txChnl == 0xFF ? -1 : LMIC.txChnl);
// restore bits in the shuffleMap that were on, but might have reset
// if availMap was used to refresh shuffleMap. These are channels that
// are feasble but not yet candidates due to band saturation
LMIC.channelShuffleMap |= saveShuffleMap & feasibleMap & ~availMap;
if (candidateCh >= 0) {
// update the channel; otherwise we'll just use the
// most recent one.
LMIC.txChnl = candidateCh;
}
return mintime;
}
#if !defined(DISABLE_BEACONS)
void LMICas923_setBcnRxParams(void) {
LMIC.dataLen = 0;
LMIC.freq = LMIC.channelFreq[LMIC.bcnChnl] & ~(u4_t)3;
LMIC.rps = setIh(setNocrc(dndr2rps((dr_t)DR_BCN), 1), LEN_BCN);
}
#endif // !DISABLE_BEACONS
#if !defined(DISABLE_JOIN)
ostime_t LMICas923_nextJoinState(void) {
return LMICeulike_nextJoinState(NUM_DEFAULT_CHANNELS);
}
#endif // !DISABLE_JOIN
void
LMICas923_initJoinLoop(void) {
// LMIC.txParam is set to 0xFF by the central code at init time.
LMICeulike_initJoinLoop(NUM_DEFAULT_CHANNELS, /* adr dBm */ AS923_REGION_TX_EIRP_MAX_DBM);
}
void
LMICas923_updateTx(ostime_t txbeg) {
u4_t freq = LMIC.channelFreq[LMIC.txChnl];
u4_t dwellDelay;
u4_t globalDutyDelay;
// Update global/band specific duty cycle stats
ostime_t airtime = calcAirTime(LMIC.rps, LMIC.dataLen);
// Update channel/global duty cycle stats
xref2band_t band = &LMIC.bands[freq & 0x3];
LMIC.freq = freq & ~(u4_t)3;
LMIC.txpow = LMICas923_getMaxEIRP(LMIC.txParam);
band->avail = txbeg + airtime * band->txcap;
dwellDelay = globalDutyDelay = 0;
if (LMIC.globalDutyRate != 0) {
globalDutyDelay = (airtime << LMIC.globalDutyRate);
}
if (LMICas923_getUplinkDwellBit(LMIC.txParam)) {
dwellDelay = AS923_UPLINK_DWELL_TIME_osticks;
}
if (dwellDelay > globalDutyDelay) {
globalDutyDelay = dwellDelay;
}
if (globalDutyDelay != 0)
LMIC.globalDutyAvail = txbeg + globalDutyDelay;
}
//
// END: AS923 related stuff
//
// ================================================================================
#endif