ttn-esp32/src/hal/hal_esp32.cpp
2019-10-02 21:37:48 +02:00

455 lines
12 KiB
C++
Executable File

/*******************************************************************************
*
* ttn-esp32 - The Things Network device library for ESP-IDF / SX127x
*
* Copyright (c) 2018 Manuel Bleichenbacher
*
* Licensed under MIT License
* https://opensource.org/licenses/MIT
*
* Hardware abstraction layer to run LMIC on a ESP32 using ESP-iDF.
*******************************************************************************/
#include "../lmic/lmic.h"
#include "../hal/hal_esp32.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "driver/spi_master.h"
#include "driver/timer.h"
#include "esp_log.h"
#define LMIC_UNUSED_PIN 0xff
static const char * const TAG = "ttn_hal";
lmic_pinmap lmic_pins;
HAL_ESP32 ttn_hal;
struct HALQueueItem {
ostime_t time;
HAL_Event ev;
HALQueueItem() : time(0), ev(DIO0) { }
HALQueueItem(HAL_Event e, ostime_t t = 0)
: time(t), ev(e) { }
};
// -----------------------------------------------------------------------------
// Constructor
HAL_ESP32::HAL_ESP32()
: nextTimerEvent(0x200000000)
{
}
// -----------------------------------------------------------------------------
// I/O
void IRAM_ATTR HAL_ESP32::dioIrqHandler(void *arg)
{
uint64_t now;
timer_get_counter_value(TTN_TIMER_GROUP, TTN_TIMER, &now);
BaseType_t higherPrioTaskWoken = pdFALSE;
HALQueueItem item { (HAL_Event)(long)arg, (ostime_t)now };
xQueueSendFromISR(ttn_hal.dioQueue, &item, &higherPrioTaskWoken);
if (higherPrioTaskWoken)
portYIELD_FROM_ISR();
}
void HAL_ESP32::ioInit()
{
// NSS and DIO0 and DIO1 are required
ASSERT(lmic_pins.nss != LMIC_UNUSED_PIN);
ASSERT(lmic_pins.dio0 != LMIC_UNUSED_PIN);
ASSERT(lmic_pins.dio1 != LMIC_UNUSED_PIN);
gpio_pad_select_gpio(lmic_pins.nss);
gpio_set_level((gpio_num_t)lmic_pins.nss, 0);
gpio_set_direction((gpio_num_t)lmic_pins.nss, GPIO_MODE_OUTPUT);
if (lmic_pins.rxtx != LMIC_UNUSED_PIN)
{
gpio_pad_select_gpio(lmic_pins.rxtx);
gpio_set_level((gpio_num_t)lmic_pins.rxtx, 0);
gpio_set_direction((gpio_num_t)lmic_pins.rxtx, GPIO_MODE_OUTPUT);
}
if (lmic_pins.rst != LMIC_UNUSED_PIN)
{
gpio_pad_select_gpio((gpio_num_t)lmic_pins.rst);
gpio_set_level((gpio_num_t)lmic_pins.rst, 0);
gpio_set_direction((gpio_num_t)lmic_pins.rst, GPIO_MODE_OUTPUT);
}
dioQueue = xQueueCreate(12, sizeof(HALQueueItem));
ASSERT(dioQueue != NULL);
gpio_pad_select_gpio(lmic_pins.dio0);
gpio_set_direction((gpio_num_t)lmic_pins.dio0, GPIO_MODE_INPUT);
gpio_set_intr_type((gpio_num_t)lmic_pins.dio0, GPIO_INTR_POSEDGE);
gpio_isr_handler_add((gpio_num_t)lmic_pins.dio0, dioIrqHandler, (void *)0);
gpio_pad_select_gpio((gpio_num_t)lmic_pins.dio1);
gpio_set_direction((gpio_num_t)lmic_pins.dio1, GPIO_MODE_INPUT);
gpio_set_intr_type((gpio_num_t)lmic_pins.dio1, GPIO_INTR_POSEDGE);
gpio_isr_handler_add((gpio_num_t)lmic_pins.dio1, dioIrqHandler, (void *)1);
ESP_LOGI(TAG, "IO initialized");
}
void hal_pin_rxtx(u1_t val)
{
if (lmic_pins.rxtx == LMIC_UNUSED_PIN)
return;
gpio_set_level((gpio_num_t)lmic_pins.rxtx, val);
}
void hal_pin_rst(u1_t val)
{
if (lmic_pins.rst == LMIC_UNUSED_PIN)
return;
if (val == 0 || val == 1)
{ // drive pin
gpio_set_level((gpio_num_t)lmic_pins.rst, val);
gpio_set_direction((gpio_num_t)lmic_pins.rst, GPIO_MODE_OUTPUT);
}
else
{ // keep pin floating
gpio_set_level((gpio_num_t)lmic_pins.rst, val);
gpio_set_direction((gpio_num_t)lmic_pins.rst, GPIO_MODE_INPUT);
}
}
s1_t hal_getRssiCal (void)
{
return lmic_pins.rssi_cal;
}
ostime_t hal_setModuleActive (bit_t val)
{
return 0;
}
bit_t hal_queryUsingTcxo(void)
{
return false;
}
// -----------------------------------------------------------------------------
// SPI
void HAL_ESP32::spiInit()
{
// init device
spi_device_interface_config_t spiConfig;
memset(&spiConfig, 0, sizeof(spiConfig));
spiConfig.mode = 1;
spiConfig.clock_speed_hz = CONFIG_TTN_SPI_FREQ;
spiConfig.command_bits = 0;
spiConfig.address_bits = 8;
spiConfig.spics_io_num = lmic_pins.nss;
spiConfig.queue_size = 1;
spiConfig.cs_ena_posttrans = 2;
esp_err_t ret = spi_bus_add_device(lmic_pins.spi_host, &spiConfig, &spiHandle);
ESP_ERROR_CHECK(ret);
ESP_LOGI(TAG, "SPI initialized");
}
void hal_spi_write(u1_t cmd, const u1_t *buf, size_t len)
{
ttn_hal.spiWrite(cmd, buf, len);
}
void HAL_ESP32::spiWrite(uint8_t cmd, const uint8_t *buf, size_t len)
{
memset(&spiTransaction, 0, sizeof(spiTransaction));
spiTransaction.addr = cmd;
spiTransaction.length = 8 * len;
spiTransaction.tx_buffer = buf;
esp_err_t err = spi_device_transmit(spiHandle, &spiTransaction);
ESP_ERROR_CHECK(err);
}
void hal_spi_read(u1_t cmd, u1_t *buf, size_t len)
{
ttn_hal.spiRead(cmd, buf, len);
}
void HAL_ESP32::spiRead(uint8_t cmd, uint8_t *buf, size_t len)
{
memset(buf, 0, len);
memset(&spiTransaction, 0, sizeof(spiTransaction));
spiTransaction.addr = cmd;
spiTransaction.length = 8 * len;
spiTransaction.rxlength = 8 * len;
spiTransaction.tx_buffer = buf;
spiTransaction.rx_buffer = buf;
esp_err_t err = spi_device_transmit(spiHandle, &spiTransaction);
ESP_ERROR_CHECK(err);
}
// -----------------------------------------------------------------------------
// TIME
/*
* LIMIC uses a 32 bit time (ostime_t) counting ticks. In this implementation
* each tick is 16µs. So the timer will wrap around once every 19 hour.
* The timer alarm should trigger when a specific value has been reached.
* Due to the wrap around, an alarm time in the future can have a lower value
* than the current timer value.
*
* ESP32 has 64 bits counters with a pecularity: the alarm does not only
* trigger when the exact value has been reached but also when the clock is
* higer than the alarm value. Therefore, the wrap around is more difficult to
* handle.
*
* The approach here is to always use a higher value than the current timer
* value. If it would be lower than the timer value, 0x100000000 is added.
* The lower 32 bits still represent the desired value. After the timer has
* triggered an alarm and is higher than 0x100000000, it's value is reduced
* by 0x100000000.
*/
static const ostime_t OVERRUN_TRESHOLD = 0x10000; // approx 10 seconds
void HAL_ESP32::timerInit()
{
timer_config_t config = {
.alarm_en = false,
.counter_en = false,
.intr_type = TIMER_INTR_LEVEL,
.counter_dir = TIMER_COUNT_UP,
.auto_reload = false,
.divider = 1280 /* 80 MHz APB_CLK * 16µs */
};
timer_init(TTN_TIMER_GROUP, TTN_TIMER, &config);
timer_set_counter_value(TTN_TIMER_GROUP, TTN_TIMER, 0x0);
timer_isr_register(TTN_TIMER_GROUP, TTN_TIMER, timerIrqHandler, NULL, ESP_INTR_FLAG_IRAM, NULL);
timer_start(TTN_TIMER_GROUP, TTN_TIMER);
ESP_LOGI(TAG, "Timer initialized");
}
void HAL_ESP32::prepareNextAlarm(u4_t time)
{
uint64_t now;
timer_get_counter_value(TTN_TIMER_GROUP, TTN_TIMER, &now);
u4_t now32 = (u4_t)now;
if (now != now32)
{
// decrease timer to 32 bit value
now = now32;
timer_pause(TTN_TIMER_GROUP, TTN_TIMER);
timer_set_counter_value(TTN_TIMER_GROUP, TTN_TIMER, now);
timer_start(TTN_TIMER_GROUP, TTN_TIMER);
}
nextTimerEvent = time;
if (now32 > time && now32 - time > OVERRUN_TRESHOLD)
nextTimerEvent += 0x100000000;
}
void HAL_ESP32::armTimer()
{
timer_set_alarm(TTN_TIMER_GROUP, TTN_TIMER, TIMER_ALARM_DIS);
timer_set_alarm_value(TTN_TIMER_GROUP, TTN_TIMER, nextTimerEvent);
timer_set_alarm(TTN_TIMER_GROUP, TTN_TIMER, TIMER_ALARM_EN);
}
void HAL_ESP32::disarmTimer()
{
timer_set_alarm(TTN_TIMER_GROUP, TTN_TIMER, TIMER_ALARM_DIS);
nextTimerEvent = 0x200000000; // wait indefinitely (almost)
}
void IRAM_ATTR HAL_ESP32::timerIrqHandler(void *arg)
{
TTN_CLEAR_TIMER_ALARM;
BaseType_t higherPrioTaskWoken = pdFALSE;
HALQueueItem item { TIMER };
xQueueSendFromISR(ttn_hal.dioQueue, &item, &higherPrioTaskWoken);
if (higherPrioTaskWoken)
portYIELD_FROM_ISR();
}
bool HAL_ESP32::wait(WaitKind waitKind)
{
TickType_t ticksToWait = waitKind == CHECK_IO ? 0 : portMAX_DELAY;
while (true)
{
HALQueueItem item;
if (xQueueReceive(dioQueue, &item, ticksToWait) == pdFALSE)
return false;
if (item.ev == WAKEUP)
{
if (waitKind != WAIT_FOR_TIMER)
{
disarmTimer();
return true;
}
}
else if (item.ev == TIMER)
{
disarmTimer();
if (waitKind != CHECK_IO)
return true;
}
else // IO interrupt
{
if (waitKind != WAIT_FOR_TIMER)
disarmTimer();
enterCriticalSection();
radio_irq_handler_v2(item.ev, item.time);
leaveCriticalSection();
if (waitKind != WAIT_FOR_TIMER)
return true;
}
}
}
u4_t hal_ticks()
{
uint64_t val;
timer_get_counter_value(TTN_TIMER_GROUP, TTN_TIMER, &val);
return (u4_t)val;
}
void hal_waitUntil(u4_t time)
{
ttn_hal.waitUntil(time);
}
void HAL_ESP32::waitUntil(uint32_t time)
{
prepareNextAlarm(time);
armTimer();
wait(WAIT_FOR_TIMER);
}
void HAL_ESP32::wakeUp()
{
HALQueueItem item { WAKEUP };
xQueueSend(dioQueue, &item, 0);
}
// check and rewind for target time
u1_t hal_checkTimer(u4_t time)
{
return ttn_hal.checkTimer(time);
}
uint8_t HAL_ESP32::checkTimer(uint32_t time)
{
uint64_t now;
timer_get_counter_value(TTN_TIMER_GROUP, TTN_TIMER, &now);
u4_t now32 = (u4_t)now;
if (time >= now32)
{
if (time - now32 < 5)
return 1; // timer will expire very soon
}
else
{
if (now32 - time < OVERRUN_TRESHOLD)
return 1; // timer has expired recently
}
prepareNextAlarm(time);
return 0;
}
void hal_sleep()
{
ttn_hal.sleep();
}
void HAL_ESP32::sleep()
{
if (wait(CHECK_IO))
return;
armTimer();
wait(WAIT_FOR_ANY_EVENT);
}
// -----------------------------------------------------------------------------
// IRQ
void hal_disableIRQs()
{
// nothing to do as interrupt handlers post message to queue
// and don't access any shared data structures
}
void hal_enableIRQs()
{
// nothing to do as interrupt handlers post message to queue
// and don't access any shared data structures
}
// -----------------------------------------------------------------------------
// Synchronization between application code and background task
void HAL_ESP32::initCriticalSection()
{
mutex = xSemaphoreCreateRecursiveMutex();
}
void HAL_ESP32::enterCriticalSection()
{
xSemaphoreTakeRecursive(mutex, portMAX_DELAY);
}
void HAL_ESP32::leaveCriticalSection()
{
xSemaphoreGiveRecursive(mutex);
}
// -----------------------------------------------------------------------------
void HAL_ESP32::backgroundTask(void* pvParameter) {
os_runloop();
}
void hal_init_ex(const void *pContext)
{
ttn_hal.init();
}
void HAL_ESP32::init()
{
// configure radio I/O and interrupt handler
ioInit();
// configure radio SPI
spiInit();
// configure timer and interrupt handler
timerInit();
}
void HAL_ESP32::startBackgroundTask() {
xTaskCreate(backgroundTask, "ttn_lora_task", 1024 * 4, NULL, CONFIG_TTN_BG_TASK_PRIO, NULL);
}
void hal_failed(const char *file, u2_t line)
{
ESP_LOGE(TAG, "%s:%d", file, line);
ASSERT(0);
}
uint8_t hal_getTxPowerPolicy(u1_t inputPolicy, s1_t requestedPower, u4_t frequency) {
return LMICHAL_radio_tx_power_policy_paboost;
}