ttn-esp32/src/lmic/lmic.c

3019 lines
108 KiB
C

/*
* Copyright (c) 2014-2016 IBM Corporation.
* All rights reserved.
*
* Copyright (c) 2016-2019 MCCI Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the <organization> nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//! \file
#define LMIC_DR_LEGACY 0
#include "lmic_bandplan.h"
#if defined(DISABLE_BEACONS) && !defined(DISABLE_PING)
#error Ping needs beacon tracking
#endif
DEFINE_LMIC;
// Fwd decls.
static void reportEventNoUpdate(ev_t);
static void reportEventAndUpdate(ev_t);
static void engineUpdate(void);
static bit_t processJoinAccept_badframe(void);
static bit_t processJoinAccept_nojoinframe(void);
#if !defined(DISABLE_BEACONS)
static void startScan (void);
#endif
// set the txrxFlags, with debugging
static inline void initTxrxFlags(const char *func, u1_t mask) {
LMIC_DEBUG2_PARAMETER(func);
#if LMIC_DEBUG_LEVEL > 1
LMIC_DEBUG_PRINTF("%"LMIC_PRId_ostime_t": %s txrxFlags %#02x --> %02x\n", os_getTime(), func, LMIC.txrxFlags, mask);
#endif
LMIC.txrxFlags = mask;
}
// or the txrxFlags, with debugging
static inline void orTxrxFlags(const char *func, u1_t mask) {
initTxrxFlags(func, LMIC.txrxFlags | mask);
}
// ================================================================================
// BEG OS - default implementations for certain OS suport functions
#if !defined(HAS_os_calls)
#if !defined(os_rlsbf2)
u2_t os_rlsbf2 (xref2cu1_t buf) {
return (u2_t)((u2_t)buf[0] | ((u2_t)buf[1]<<8));
}
#endif
#if !defined(os_rlsbf4)
u4_t os_rlsbf4 (xref2cu1_t buf) {
return (u4_t)((u4_t)buf[0] | ((u4_t)buf[1]<<8) | ((u4_t)buf[2]<<16) | ((u4_t)buf[3]<<24));
}
#endif
#if !defined(os_rmsbf4)
u4_t os_rmsbf4 (xref2cu1_t buf) {
return (u4_t)((u4_t)buf[3] | ((u4_t)buf[2]<<8) | ((u4_t)buf[1]<<16) | ((u4_t)buf[0]<<24));
}
#endif
#if !defined(os_wlsbf2)
void os_wlsbf2 (xref2u1_t buf, u2_t v) {
buf[0] = v;
buf[1] = v>>8;
}
#endif
#if !defined(os_wlsbf4)
void os_wlsbf4 (xref2u1_t buf, u4_t v) {
buf[0] = v;
buf[1] = v>>8;
buf[2] = v>>16;
buf[3] = v>>24;
}
#endif
#if !defined(os_wmsbf4)
void os_wmsbf4 (xref2u1_t buf, u4_t v) {
buf[3] = v;
buf[2] = v>>8;
buf[1] = v>>16;
buf[0] = v>>24;
}
#endif
#if !defined(os_getBattLevel)
u1_t os_getBattLevel (void) {
return MCMD_DEVS_BATT_NOINFO;
}
#endif
#if !defined(os_crc16)
// New CRC-16 CCITT(XMODEM) checksum for beacons:
u2_t os_crc16 (xref2cu1_t data, uint len) {
u2_t remainder = 0;
u2_t polynomial = 0x1021;
for( uint i = 0; i < len; i++ ) {
remainder ^= data[i] << 8;
for( u1_t bit = 8; bit > 0; bit--) {
if( (remainder & 0x8000) )
remainder = (remainder << 1) ^ polynomial;
else
remainder <<= 1;
}
}
return remainder;
}
#endif
#endif // !HAS_os_calls
// END OS - default implementations for certain OS suport functions
// ================================================================================
// ================================================================================
// BEG AES
static void micB0 (u4_t devaddr, u4_t seqno, int dndir, int len) {
os_clearMem(AESaux,16);
AESaux[0] = 0x49;
AESaux[5] = dndir?1:0;
AESaux[15] = len;
os_wlsbf4(AESaux+ 6,devaddr);
os_wlsbf4(AESaux+10,seqno);
}
static int aes_verifyMic (xref2cu1_t key, u4_t devaddr, u4_t seqno, int dndir, xref2u1_t pdu, int len) {
micB0(devaddr, seqno, dndir, len);
os_copyMem(AESkey,key,16);
return os_aes(AES_MIC, pdu, len) == os_rmsbf4(pdu+len);
}
static void aes_appendMic (xref2cu1_t key, u4_t devaddr, u4_t seqno, int dndir, xref2u1_t pdu, int len) {
micB0(devaddr, seqno, dndir, len);
os_copyMem(AESkey,key,16);
// MSB because of internal structure of AES
os_wmsbf4(pdu+len, os_aes(AES_MIC, pdu, len));
}
static void aes_appendMic0 (xref2u1_t pdu, int len) {
os_getDevKey(AESkey);
os_wmsbf4(pdu+len, os_aes(AES_MIC|AES_MICNOAUX, pdu, len)); // MSB because of internal structure of AES
}
static int aes_verifyMic0 (xref2u1_t pdu, int len) {
os_getDevKey(AESkey);
return os_aes(AES_MIC|AES_MICNOAUX, pdu, len) == os_rmsbf4(pdu+len);
}
static void aes_encrypt (xref2u1_t pdu, int len) {
os_getDevKey(AESkey);
os_aes(AES_ENC, pdu, len);
}
static void aes_cipher (xref2cu1_t key, u4_t devaddr, u4_t seqno, int dndir, xref2u1_t payload, int len) {
if( len <= 0 )
return;
os_clearMem(AESaux, 16);
AESaux[0] = AESaux[15] = 1; // mode=cipher / dir=down / block counter=1
AESaux[5] = dndir?1:0;
os_wlsbf4(AESaux+ 6,devaddr);
os_wlsbf4(AESaux+10,seqno);
os_copyMem(AESkey,key,16);
os_aes(AES_CTR, payload, len);
}
static void aes_sessKeys (u2_t devnonce, xref2cu1_t artnonce, xref2u1_t nwkkey, xref2u1_t artkey) {
os_clearMem(nwkkey, 16);
nwkkey[0] = 0x01;
os_copyMem(nwkkey+1, artnonce, LEN_ARTNONCE+LEN_NETID);
os_wlsbf2(nwkkey+1+LEN_ARTNONCE+LEN_NETID, devnonce);
os_copyMem(artkey, nwkkey, 16);
artkey[0] = 0x02;
os_getDevKey(AESkey);
os_aes(AES_ENC, nwkkey, 16);
os_getDevKey(AESkey);
os_aes(AES_ENC, artkey, 16);
}
// END AES
// ================================================================================
// ================================================================================
// BEG LORA
static CONST_TABLE(u1_t, SENSITIVITY)[7][3] = {
// ------------bw----------
// 125kHz 250kHz 500kHz
{ 141-109, 141-109, 141-109 }, // FSK
{ 141-127, 141-124, 141-121 }, // SF7
{ 141-129, 141-126, 141-123 }, // SF8
{ 141-132, 141-129, 141-126 }, // SF9
{ 141-135, 141-132, 141-129 }, // SF10
{ 141-138, 141-135, 141-132 }, // SF11
{ 141-141, 141-138, 141-135 } // SF12
};
int getSensitivity (rps_t rps) {
return -141 + TABLE_GET_U1_TWODIM(SENSITIVITY, getSf(rps), getBw(rps));
}
ostime_t calcAirTime (rps_t rps, u1_t plen) {
u1_t bw = getBw(rps); // 0,1,2 = 125,250,500kHz
u1_t sf = getSf(rps); // 0=FSK, 1..6 = SF7..12
if( sf == FSK ) {
return (plen+/*preamble*/5+/*syncword*/3+/*len*/1+/*crc*/2) * /*bits/byte*/8
* (s4_t)OSTICKS_PER_SEC / /*kbit/s*/50000;
}
u1_t sfx = 4*(sf+(7-SF7));
u1_t q = sfx - (sf >= SF11 ? 8 : 0);
int tmp = 8*plen - sfx + 28 + (getNocrc(rps)?0:16) - (getIh(rps)?20:0);
if( tmp > 0 ) {
tmp = (tmp + q - 1) / q;
tmp *= getCr(rps)+5;
tmp += 8;
} else {
tmp = 8;
}
tmp = (tmp<<2) + /*preamble*/49 /* 4 * (8 + 4.25) */;
// bw = 125000 = 15625 * 2^3
// 250000 = 15625 * 2^4
// 500000 = 15625 * 2^5
// sf = 7..12
//
// osticks = tmp * OSTICKS_PER_SEC * 1<<sf / bw
//
// 3 => counter reduced divisor 125000/8 => 15625
// 2 => counter 2 shift on tmp
sfx = sf+(7-SF7) - (3+2) - bw;
int div = 15625;
if( sfx > 4 ) {
// prevent 32bit signed int overflow in last step
div >>= sfx-4;
sfx = 4;
}
// Need 32bit arithmetic for this last step
return (((ostime_t)tmp << sfx) * OSTICKS_PER_SEC + div/2) / div;
}
// END LORA
// ================================================================================
// Table below defines the size of one symbol as
// symtime = 256us * 2^T(sf,bw)
// 256us is called one symunit.
// SF:
// BW: |__7___8___9__10__11__12
// 125kHz | 2 3 4 5 6 7
// 250kHz | 1 2 3 4 5 6
// 500kHz | 0 1 2 3 4 5
//
#if !defined(DISABLE_BEACONS)
static ostime_t calcRxWindow (u1_t secs, dr_t dr) {
ostime_t rxoff, err;
if( secs==0 ) {
// aka 128 secs (next becaon)
rxoff = LMIC.drift;
err = LMIC.lastDriftDiff;
} else {
// scheduled RX window within secs into current beacon period
rxoff = (LMIC.drift * (ostime_t)secs) >> BCN_INTV_exp;
err = (LMIC.lastDriftDiff * (ostime_t)secs) >> BCN_INTV_exp;
}
u1_t rxsyms = LMICbandplan_MINRX_SYMS_LoRa_ClassB;
err += (ostime_t)LMIC.maxDriftDiff * LMIC.missedBcns;
LMIC.rxsyms = LMICbandplan_MINRX_SYMS_LoRa_ClassB + (err / dr2hsym(dr));
return (rxsyms-LMICbandplan_PAMBL_SYMS) * dr2hsym(dr) + rxoff;
}
// Setup beacon RX parameters assuming we have an error of ms (aka +/-(ms/2))
static void calcBcnRxWindowFromMillis (u1_t ms, bit_t ini) {
if( ini ) {
LMIC.drift = 0;
LMIC.maxDriftDiff = 0;
LMIC.missedBcns = 0;
LMIC.bcninfo.flags |= BCN_NODRIFT|BCN_NODDIFF;
}
ostime_t hsym = dr2hsym(DR_BCN);
LMIC.bcnRxsyms = LMICbandplan_MINRX_SYMS_LoRa_ClassB + ms2osticksCeil(ms) / hsym;
LMIC.bcnRxtime = LMIC.bcninfo.txtime + BCN_INTV_osticks - (LMIC.bcnRxsyms-LMICbandplan_PAMBL_SYMS) * hsym;
}
#endif // !DISABLE_BEACONS
#if !defined(DISABLE_PING)
// Setup scheduled RX window (ping/multicast slot)
static void rxschedInit (xref2rxsched_t rxsched) {
os_clearMem(AESkey,16);
os_clearMem(LMIC.frame+8,8);
os_wlsbf4(LMIC.frame, LMIC.bcninfo.time);
os_wlsbf4(LMIC.frame+4, LMIC.devaddr);
os_aes(AES_ENC,LMIC.frame,16);
u1_t intvExp = rxsched->intvExp;
ostime_t off = os_rlsbf2(LMIC.frame) & (0x0FFF >> (7 - intvExp)); // random offset (slot units)
rxsched->rxbase = (LMIC.bcninfo.txtime +
BCN_RESERVE_osticks +
ms2osticks(BCN_SLOT_SPAN_ms * off)); // random offset osticks
rxsched->slot = 0;
rxsched->rxtime = rxsched->rxbase - calcRxWindow(/*secs BCN_RESERVE*/2+(1<<intvExp),rxsched->dr);
rxsched->rxsyms = LMIC.rxsyms;
}
static bit_t rxschedNext (xref2rxsched_t rxsched, ostime_t cando) {
again:
if( rxsched->rxtime - cando >= 0 )
return 1;
u1_t slot;
if( (slot=rxsched->slot) >= 128 )
return 0;
u1_t intv = 1<<rxsched->intvExp;
if( (rxsched->slot = (slot += (intv))) >= 128 )
return 0;
rxsched->rxtime = rxsched->rxbase
+ ((BCN_WINDOW_osticks * (ostime_t)slot) >> BCN_INTV_exp)
- calcRxWindow(/*secs BCN_RESERVE*/2+slot+intv,rxsched->dr);
rxsched->rxsyms = LMIC.rxsyms;
goto again;
}
#endif // !DISABLE_PING)
ostime_t LMICcore_rndDelay (u1_t secSpan) {
u2_t r = os_getRndU2();
ostime_t delay = r;
if( delay > OSTICKS_PER_SEC )
delay = r % (u2_t)OSTICKS_PER_SEC;
if( secSpan > 0 )
delay += ((u1_t)r % secSpan) * OSTICKS_PER_SEC;
return delay;
}
// delay reftime ticks, plus a random interval in [0..secSpan).
static void txDelay (ostime_t reftime, u1_t secSpan) {
if (secSpan != 0)
reftime += LMICcore_rndDelay(secSpan);
if( LMIC.globalDutyRate == 0 || (reftime - LMIC.globalDutyAvail) > 0 ) {
LMIC.globalDutyAvail = reftime;
LMIC.opmode |= OP_RNDTX;
}
}
void LMICcore_setDrJoin (u1_t reason, u1_t dr) {
LMIC_EV_PARAMETER(reason);
EV(drChange, INFO, (e_.reason = reason,
e_.deveui = MAIN::CDEV->getEui(),
e_.dr = dr|DR_PAGE,
e_.txpow = LMIC.adrTxPow,
e_.prevdr = LMIC.datarate|DR_PAGE,
e_.prevtxpow = LMIC.adrTxPow));
LMIC.datarate = dr;
DO_DEVDB(LMIC.datarate,datarate);
}
static bit_t setDrTxpow (u1_t reason, u1_t dr, s1_t pow) {
bit_t result = 0;
LMIC_EV_PARAMETER(reason);
EV(drChange, INFO, (e_.reason = reason,
e_.deveui = MAIN::CDEV->getEui(),
e_.dr = dr|DR_PAGE,
e_.txpow = pow,
e_.prevdr = LMIC.datarate|DR_PAGE,
e_.prevtxpow = LMIC.adrTxPow));
if( pow != KEEP_TXPOW && pow != LMIC.adrTxPow ) {
LMIC.adrTxPow = pow;
result = 1;
}
if( LMIC.datarate != dr ) {
LMIC.datarate = dr;
DO_DEVDB(LMIC.datarate,datarate);
LMIC.opmode |= OP_NEXTCHNL;
result = 1;
}
return result;
}
#if !defined(DISABLE_PING)
void LMIC_stopPingable (void) {
LMIC.opmode &= ~(OP_PINGABLE|OP_PINGINI);
}
void LMIC_setPingable (u1_t intvExp) {
// Change setting
LMIC.ping.intvExp = (intvExp & 0x7);
LMIC.opmode |= OP_PINGABLE;
// App may call LMIC_enableTracking() explicitely before
// Otherwise tracking is implicitly enabled here
if( (LMIC.opmode & (OP_TRACK|OP_SCAN)) == 0 && LMIC.bcninfoTries == 0 )
LMIC_enableTracking(0);
}
#endif // !DISABLE_PING
static void runEngineUpdate (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
engineUpdate();
}
static void reportEventAndUpdate(ev_t ev) {
reportEventNoUpdate(ev);
engineUpdate();
}
static void reportEventNoUpdate (ev_t ev) {
uint32_t const evSet = UINT32_C(1) << ev;
EV(devCond, INFO, (e_.reason = EV::devCond_t::LMIC_EV,
e_.eui = MAIN::CDEV->getEui(),
e_.info = ev));
#if LMIC_ENABLE_onEvent
void (*pOnEvent)(ev_t) = onEvent;
// rxstart is critical timing; legacy onEvent handlers
// don't comprehend this; so don't report.
if (pOnEvent != NULL && (evSet & (UINT32_C(1)<<EV_RXSTART)) == 0)
pOnEvent(ev);
#endif // LMIC_ENABLE_onEvent
// we want people who need tiny RAM footprints to be able
// to use onEvent and overide the dynamic mechanism.
#if LMIC_ENABLE_user_events
// create a mask to test against sets of events.
// if a message was received, notify the user.
if ((evSet & ((UINT32_C(1)<<EV_TXCOMPLETE) | (UINT32_C(1)<<EV_RXCOMPLETE))) != 0 &&
LMIC.client.rxMessageCb != NULL &&
(LMIC.dataLen != 0 || LMIC.dataBeg != 0)) {
uint8_t port;
// assume no port.
port = 0;
// correct assumption if a port was provided.
if (LMIC.txrxFlags & TXRX_PORT)
port = LMIC.frame[LMIC.dataBeg - 1];
// notify the user.
LMIC.client.rxMessageCb(
LMIC.client.rxMessageUserData,
port,
LMIC.frame + LMIC.dataBeg,
LMIC.dataLen
);
}
// tell the client about completed transmits -- the buffer
// is now available again. We use set notation again in case
// we later discover another event completes messages
if ((evSet & ((UINT32_C(1)<<EV_TXCOMPLETE) | (UINT32_C(1) <<EV_TXCANCELED))) != 0) {
lmic_txmessage_cb_t * const pTxMessageCb = LMIC.client.txMessageCb;
if (pTxMessageCb != NULL) {
int fSuccess;
// reset before notifying user. If we reset after
// notifying, then if user does a recursive call
// in their message processing
// function, we would clobber the value
LMIC.client.txMessageCb = NULL;
// compute exit status
if (ev == EV_TXCANCELED || (LMIC.txrxFlags & TXRX_LENERR) != 0) {
// canceled, or killed because of length error: unsuccessful.
fSuccess = 0;
} else if (/* ev == EV_TXCOMPLETE && */ LMIC.pendTxConf) {
fSuccess = (LMIC.txrxFlags & TXRX_ACK) != 0;
} else {
// unconfirmed uplinks are successful if they were sent.
fSuccess = 1;
}
// notify the user.
pTxMessageCb(LMIC.client.txMessageUserData, fSuccess);
}
}
// tell the client about events in general
if (LMIC.client.eventCb != NULL)
LMIC.client.eventCb(LMIC.client.eventUserData, ev);
#endif // LMIC_ENABLE_user_events
}
int LMIC_registerRxMessageCb(lmic_rxmessage_cb_t *pRxMessageCb, void *pUserData) {
#if LMIC_ENABLE_user_events
LMIC.client.rxMessageCb = pRxMessageCb;
LMIC.client.rxMessageUserData = pUserData;
return 1;
#else // !LMIC_ENABLE_user_events
return 0;
#endif // !LMIC_ENABLE_user_events
}
int LMIC_registerEventCb(lmic_event_cb_t *pEventCb, void *pUserData) {
#if LMIC_ENABLE_user_events
LMIC.client.eventCb = pEventCb;
LMIC.client.eventUserData = pUserData;
return 1;
#else // ! LMIC_ENABLE_user_events
return 0;
#endif // ! LMIC_ENABLE_user_events
}
static void runReset (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
// clear pending TX.
LMIC_clrTxData();
// Disable session
LMIC_reset();
// report event before the join event.
reportEventNoUpdate(EV_RESET);
#if !defined(DISABLE_JOIN)
LMIC_startJoining();
#else
os_setCallback(&LMIC.osjob, FUNC_ADDR(runEngineUpdate));
#endif // !DISABLE_JOIN
}
static void resetJoinParams(void) {
LMIC.rx1DrOffset = 0;
LMIC.dn2Dr = DR_DNW2;
LMIC.dn2Freq = FREQ_DNW2;
#if LMIC_ENABLE_TxParamSetupReq
LMIC.txParam = 0xFF;
#endif
}
static void stateJustJoined (void) {
LMIC.seqnoDn = LMIC.seqnoUp = 0;
LMIC.rejoinCnt = 0;
LMIC.dnConf = LMIC.lastDnConf = LMIC.adrChanged = 0;
LMIC.upRepeatCount = LMIC.upRepeat = 0;
#if !defined(DISABLE_MCMD_RXParamSetupReq)
LMIC.dn2Ans = 0;
#endif
#if !defined(DISABLE_MCMD_RXTimingSetupReq)
LMIC.macRxTimingSetupAns = 0;
#endif
#if !defined(DISABLE_MCMD_DlChannelReq) && CFG_LMIC_EU_like
LMIC.macDlChannelAns = 0;
#endif
LMIC.moreData = 0;
LMIC.upRepeat = 0;
resetJoinParams();
#if !defined(DISABLE_BEACONS)
LMIC.bcnChnl = CHNL_BCN;
#endif
#if !defined(DISABLE_PING)
LMIC.ping.freq = FREQ_PING;
LMIC.ping.dr = DR_PING;
#endif
}
// ================================================================================
// Decoding frames
#if !defined(DISABLE_BEACONS)
// Decode beacon - do not overwrite bcninfo unless we have a match!
static lmic_beacon_error_t decodeBeacon (void) {
ASSERT(LMIC.dataLen == LEN_BCN); // implicit header RX guarantees this
xref2u1_t d = LMIC.frame;
if(! LMICbandplan_isValidBeacon1(d))
return LMIC_BEACON_ERROR_INVALID; // first (common) part fails CRC check
// First set of fields is ok
u4_t bcnnetid = os_rlsbf4(&d[OFF_BCN_NETID]) & 0xFFFFFF;
if( bcnnetid != LMIC.netid )
return LMIC_BEACON_ERROR_WRONG_NETWORK; // not the beacon we're looking for
LMIC.bcninfo.flags &= ~(BCN_PARTIAL|BCN_FULL);
// Match - update bcninfo structure
LMIC.bcninfo.snr = LMIC.snr;
LMIC.bcninfo.rssi = LMIC.rssi;
LMIC.bcninfo.txtime = LMIC.rxtime - AIRTIME_BCN_osticks;
LMIC.bcninfo.time = os_rlsbf4(&d[OFF_BCN_TIME]);
LMIC.bcninfo.flags |= BCN_PARTIAL;
// Check 2nd set
if( os_rlsbf2(&d[OFF_BCN_CRC2]) != os_crc16(d,OFF_BCN_CRC2) )
return LMIC_BEACON_ERROR_SUCCESS_PARTIAL;
// Second set of fields is ok
LMIC.bcninfo.lat = (s4_t)os_rlsbf4(&d[OFF_BCN_LAT-1]) >> 8; // read as signed 24-bit
LMIC.bcninfo.lon = (s4_t)os_rlsbf4(&d[OFF_BCN_LON-1]) >> 8; // ditto
LMIC.bcninfo.info = d[OFF_BCN_INFO];
LMIC.bcninfo.flags |= BCN_FULL;
return LMIC_BEACON_ERROR_SUCCESS_FULL;
}
#endif // !DISABLE_BEACONS
// put a mac response to the current output buffer. Limit according to kind of
// mac data (piggyback vs port 0)
static bit_t put_mac_uplink_byte(uint8_t b) {
if (LMIC.pendMacPiggyback) {
// put in pendMacData
if (LMIC.pendMacLen < sizeof(LMIC.pendMacData)) {
LMIC.pendMacData[LMIC.pendMacLen++] = b;
return 1;
} else {
return 0;
}
} else {
// put in pendTxData
if (LMIC.pendMacLen < sizeof(LMIC.pendTxData)) {
LMIC.pendTxData[LMIC.pendMacLen++] = b;
return 1;
} else {
return 0;
}
}
}
static bit_t put_mac_uplink_byte2(uint8_t b1, uint8_t b2) {
u1_t outindex = LMIC.pendMacLen;
if (put_mac_uplink_byte(b1) && put_mac_uplink_byte(b2)) {
return 1;
} else {
LMIC.pendMacLen = outindex;
return 0;
}
}
static bit_t put_mac_uplink_byte3(u1_t b1, u1_t b2, u1_t b3) {
u1_t outindex = LMIC.pendMacLen;
if (put_mac_uplink_byte(b1) && put_mac_uplink_byte(b2) && put_mac_uplink_byte(b3)) {
return 1;
} else {
LMIC.pendMacLen = outindex;
return 0;
}
}
static CONST_TABLE(u1_t, macCmdSize)[] = {
/* 2: LinkCheckAns */ 3,
/* 3: LinkADRReq */ 5,
/* 4: DutyCycleReq */ 2,
/* 5: RXParamSetupReq */ 5,
/* 6: DevStatusReq */ 1,
/* 7: NewChannelReq */ 6,
/* 8: RXTimingSetupReq */ 2,
/* 9: TxParamSetupReq */ 2,
/* 0x0A: DlChannelReq */ 5,
/* B, C: RFU */ 0, 0,
/* 0x0D: DeviceTimeAns */ 6,
/* 0x0E, 0x0F */ 0, 0,
/* 0x10: PingSlotInfoAns */ 1,
/* 0x11: PingSlotChannelReq */ 5,
/* 0x12: BeaconTimingAns */ 4,
/* 0x13: BeaconFreqReq */ 4
};
static u1_t getMacCmdSize(u1_t macCmd) {
if (macCmd < 2)
return 0;
if (macCmd >= LENOF_TABLE(macCmdSize) - 2)
return 0;
return TABLE_GET_U1(macCmdSize, macCmd - 2);
}
static bit_t
applyAdrRequests(
const uint8_t *opts,
int olen,
u1_t adrAns
) {
lmic_saved_adr_state_t initialState;
int const kAdrReqSize = 5;
int oidx;
u1_t p1 = 0;
u1_t p4 = 0;
bit_t response_fit = 1;
bit_t map_ok = 1;
LMICbandplan_saveAdrState(&initialState);
// compute the changes
if (adrAns == (MCMD_LinkADRAns_PowerACK | MCMD_LinkADRAns_DataRateACK | MCMD_LinkADRAns_ChannelACK)) {
for (oidx = 0; oidx < olen; oidx += kAdrReqSize) {
// can we advance?
if (olen - oidx < kAdrReqSize) {
// ignore the malformed one at the end
break;
}
u2_t chmap = os_rlsbf2(&opts[oidx+2]);// list of enabled channels
p1 = opts[oidx+1]; // txpow + DR, in case last
p4 = opts[oidx+4]; // ChMaskCtl, NbTrans
u1_t chpage = p4 & MCMD_LinkADRReq_Redundancy_ChMaskCntl_MASK; // channel page
map_ok = LMICbandplan_mapChannels(chpage, chmap);
LMICOS_logEventUint32("applyAdrRequests: mapChannels", (chpage << 16)|(chmap << 0));
}
}
if (! map_ok) {
adrAns &= ~MCMD_LinkADRAns_ChannelACK;
}
// p1 now has txpow + DR. DR must be feasible.
dr_t dr = (dr_t)(p1>>MCMD_LinkADRReq_DR_SHIFT);
if (adrAns == (MCMD_LinkADRAns_PowerACK | MCMD_LinkADRAns_DataRateACK | MCMD_LinkADRAns_ChannelACK) && ! LMICbandplan_isDataRateFeasible(dr)) {
adrAns &= ~MCMD_LinkADRAns_DataRateACK;
LMICOS_logEventUint32("applyAdrRequests: final DR not feasible", dr);
}
if (adrAns != (MCMD_LinkADRAns_PowerACK | MCMD_LinkADRAns_DataRateACK | MCMD_LinkADRAns_ChannelACK)) {
LMICbandplan_restoreAdrState(&initialState);
}
// now put all the options
for (oidx = 0; oidx < olen && response_fit; oidx += kAdrReqSize) {
// can we advance?
if (olen - oidx < kAdrReqSize) {
// ignore the malformed one at the end
break;
}
response_fit = put_mac_uplink_byte2(MCMD_LinkADRAns, adrAns);
}
// all done scanning options
bit_t changes = LMICbandplan_compareAdrState(&initialState);
// handle the final options
if (adrAns == (MCMD_LinkADRAns_PowerACK | MCMD_LinkADRAns_DataRateACK | MCMD_LinkADRAns_ChannelACK)) {
// handle uplink repeat count
u1_t uprpt = p4 & MCMD_LinkADRReq_Redundancy_NbTrans_MASK; // up repeat count
if (LMIC.upRepeat != uprpt) {
LMIC.upRepeat = uprpt;
changes = 1;
}
LMICOS_logEventUint32("applyAdrRequests: setDrTxPow", (adrAns << 16)|(dr << 8)|(p1 << 0));
// handle power changes here, too.
changes |= setDrTxpow(DRCHG_NWKCMD, dr, pow2dBm(p1));
}
// Certification doesn't like this, but it makes the device happier with TTN.
// LMIC.adrChanged = changes; // move the ADR FSM up to "time to request"
return response_fit;
}
static int
scan_mac_cmds_link_adr(
const uint8_t *opts,
int olen,
bit_t *presponse_fit
)
{
LMICOS_logEventUint32("scan_mac_cmds_link_adr", olen);
if (olen == 0)
return 0;
int oidx = 0;
int const kAdrReqSize = 5;
int lastOidx;
u1_t adrAns = MCMD_LinkADRAns_PowerACK | MCMD_LinkADRAns_DataRateACK | MCMD_LinkADRAns_ChannelACK;
// process the contiguous slots
for (;;) {
lastOidx = oidx;
// can we advance?
if (olen - oidx < kAdrReqSize) {
// ignore the malformed one at the end; but fail it.
adrAns = 0;
break;
}
u1_t p1 = opts[oidx+1]; // txpow + DR
u2_t chmap = os_rlsbf2(&opts[oidx+2]);// list of enabled channels
u1_t chpage = opts[oidx+4] & MCMD_LinkADRReq_Redundancy_ChMaskCntl_MASK; // channel page
// u1_t uprpt = opts[oidx+4] & MCMD_LinkADRReq_Redundancy_NbTrans_MASK; // up repeat count
dr_t dr = (dr_t)(p1>>MCMD_LinkADRReq_DR_SHIFT);
if( !LMICbandplan_canMapChannels(chpage, chmap) ) {
adrAns &= ~MCMD_LinkADRAns_ChannelACK;
LMICOS_logEventUint32("scan_mac_cmds_link_adr: failed canMapChannels", (chpage << UINT32_C(16))|(chmap << UINT32_C(0)));
}
if( !validDR(dr) ) {
adrAns &= ~MCMD_LinkADRAns_DataRateACK;
}
if (pow2dBm(p1) == -128) {
adrAns &= ~MCMD_LinkADRAns_PowerACK;
}
oidx += kAdrReqSize;
if (opts[oidx] != MCMD_LinkADRReq)
break;
}
// go back and apply the ADR changes, if any -- use the effective length,
// and process.
*presponse_fit = applyAdrRequests(opts, lastOidx + kAdrReqSize, adrAns);
return lastOidx;
}
// scan mac commands starting at opts[] for olen, return count of bytes consumed.
// build response in pendMacData[], but limit length as needed; simply chop at last
// response that fits.
static int
scan_mac_cmds(
const uint8_t *opts,
int olen,
int port
) {
int oidx = 0;
uint8_t cmd;
LMIC.pendMacLen = 0;
if (port == 0)
LMIC.pendMacPiggyback = 0;
else
LMIC.pendMacPiggyback = 1;
while( oidx < olen ) {
bit_t response_fit;
response_fit = 1;
cmd = opts[oidx];
/* compute length, and exit for illegal commands */
int const cmdlen = getMacCmdSize(cmd);
if (cmdlen > olen - oidx) {
// "the first unknown command terminates processing"
olen = oidx;
break;
}
switch( cmd ) {
case MCMD_LinkCheckAns: {
// TODO(tmm@mcci.com) capture these, reliably..
//int gwmargin = opts[oidx+1];
//int ngws = opts[oidx+2];
break;
}
// from 1.0.3 spec section 5.2:
// For the purpose of configuring the end-device channel mask, the end-device will
// process all contiguous LinkAdrReq messages, in the order present in the downlink message,
// as a single atomic block command. The end-device will accept or reject all Channel Mask
// controls in the contiguous block, and provide consistent Channel Mask ACK status
// indications for each command in the contiguous block in each LinkAdrAns message,
// reflecting the acceptance or rejection of this atomic channel mask setting.
//
// So we need to process all the contigious commands
case MCMD_LinkADRReq: {
// skip over all but the last command.
oidx += scan_mac_cmds_link_adr(opts + oidx, olen - oidx, &response_fit);
break;
}
case MCMD_DevStatusReq: {
// LMIC.snr is SNR times 4, convert to real SNR; rounding towards zero.
const int snr = (LMIC.snr + 2) / 4;
// per [1.02] 5.5. the margin is the SNR.
LMIC.devAnsMargin = (u1_t)(0b00111111 & (snr <= -32 ? -32 : snr >= 31 ? 31 : snr));
response_fit = put_mac_uplink_byte3(MCMD_DevStatusAns, os_getBattLevel(), LMIC.devAnsMargin);
break;
}
#if !defined(DISABLE_MCMD_RXParamSetupReq)
case MCMD_RXParamSetupReq: {
dr_t dr = (dr_t)(opts[oidx+1] & 0x0F);
u1_t rx1DrOffset = (u1_t)((opts[oidx+1] & 0x70) >> 4);
u4_t freq = LMICbandplan_convFreq(&opts[oidx+2]);
LMIC.dn2Ans = 0xC0; // answer pending, but send this one in order.
if( validDR(dr) )
LMIC.dn2Ans |= MCMD_RXParamSetupAns_RX2DataRateACK;
if( freq != 0 )
LMIC.dn2Ans |= MCMD_RXParamSetupAns_ChannelACK;
if (rx1DrOffset <= 3)
LMIC.dn2Ans |= MCMD_RXParamSetupAns_RX1DrOffsetAck;
if( LMIC.dn2Ans == (0xC0|MCMD_RXParamSetupAns_RX2DataRateACK|MCMD_RXParamSetupAns_ChannelACK| MCMD_RXParamSetupAns_RX1DrOffsetAck) ) {
LMIC.dn2Dr = dr;
LMIC.dn2Freq = freq;
LMIC.rx1DrOffset = rx1DrOffset;
DO_DEVDB(LMIC.dn2Dr,dn2Dr);
DO_DEVDB(LMIC.dn2Freq,dn2Freq);
}
/* put the first copy of the message */
response_fit = put_mac_uplink_byte2(MCMD_RXParamSetupAns, LMIC.dn2Ans & ~MCMD_RXParamSetupAns_RFU);
break;
}
#endif // !DISABLE_MCMD_RXParamSetupReq
#if !defined(DISABLE_MCMD_RXTimingSetupReq)
case MCMD_RXTimingSetupReq: {
u1_t delay = opts[oidx+1] & MCMD_RXTimingSetupReq_Delay;
if (delay == 0)
delay = 1;
LMIC.rxDelay = delay;
LMIC.macRxTimingSetupAns = 2;
response_fit = put_mac_uplink_byte(MCMD_RXTimingSetupAns);
break;
}
#endif // !DISABLE_MCMD_RXTimingSetupReq
#if !defined(DISABLE_MCMD_DutyCycleReq)
case MCMD_DutyCycleReq: {
u1_t cap = opts[oidx+1];
LMIC.globalDutyRate = cap & 0xF;
LMIC.globalDutyAvail = os_getTime();
DO_DEVDB(cap,dutyCap);
response_fit = put_mac_uplink_byte(MCMD_DutyCycleAns);
break;
}
#endif // !DISABLE_MCMD_DutyCycleReq
#if !defined(DISABLE_MCMD_NewChannelReq) && CFG_LMIC_EU_like
case MCMD_NewChannelReq: {
u1_t chidx = opts[oidx+1]; // channel
u4_t raw_f_not_zero = opts[oidx+2] | opts[oidx+3] | opts[oidx+4];
u4_t freq = LMICbandplan_convFreq(&opts[oidx+2]); // freq
u1_t drs = opts[oidx+5]; // datarate span
u1_t ans = MCMD_NewChannelAns_DataRateACK|MCMD_NewChannelAns_ChannelACK;
if (freq == 0 && raw_f_not_zero) {
ans &= ~MCMD_NewChannelAns_ChannelACK;
}
u1_t MaxDR = drs >> 4;
u1_t MinDR = drs & 0xF;
if (MaxDR < MinDR || !validDR(MaxDR) || !validDR(MinDR)) {
ans &= ~MCMD_NewChannelAns_DataRateACK;
}
if( ans == (MCMD_NewChannelAns_DataRateACK|MCMD_NewChannelAns_ChannelACK)) {
if ( ! LMIC_setupChannel(chidx, freq, DR_RANGE_MAP(MinDR, MaxDR), -1) ) {
LMICOS_logEventUint32("NewChannelReq: setupChannel failed", (MaxDR << 24u) | (MinDR << 16u) | (raw_f_not_zero << 8) | (chidx << 0));
ans &= ~MCMD_NewChannelAns_ChannelACK;
}
}
response_fit = put_mac_uplink_byte2(MCMD_NewChannelAns, ans);
break;
}
#endif // !DISABLE_MCMD_NewChannelReq
#if !defined(DISABLE_MCMD_DlChannelReq) && CFG_LMIC_EU_like
case MCMD_DlChannelReq: {
u1_t chidx = opts[oidx+1]; // channel
u4_t freq = LMICbandplan_convFreq(&opts[oidx+2]); // freq
u1_t ans = MCMD_DlChannelAns_FreqACK|MCMD_DlChannelAns_ChannelACK;
if (freq == 0) {
ans &= ~MCMD_DlChannelAns_ChannelACK;
}
if (chidx > MAX_CHANNELS) {
// this is not defined by the 1.0.3 spec
ans = 0;
} else if ((LMIC.channelMap & (1 << chidx)) == 0) {
// the channel is not enabled for downlink.
ans &= ~MCMD_DlChannelAns_FreqACK;
}
if( ans == (MCMD_DlChannelAns_FreqACK|MCMD_DlChannelAns_ChannelACK)) {
LMIC.channelDlFreq[chidx] = freq;
}
response_fit = put_mac_uplink_byte2(MCMD_DlChannelAns, ans);
// set sticky answer.
LMIC.macDlChannelAns = ans | 0xC0;
break;
}
#endif // !DISABLE_MCMD_DlChannelReq
#if !defined(DISABLE_MCMD_PingSlotChannelReq) && !defined(DISABLE_PING)
case MCMD_PingSlotChannelReq: {
u4_t raw_f_not_zero = opts[oidx+1] | opts[oidx+2] | opts[oidx+3];
u4_t freq = LMICbandplan_convFreq(&opts[oidx+1]);
u1_t dr = opts[oidx+4] & 0xF;
u1_t ans = MCMD_PingSlotFreqAns_DataRateACK|MCMD_PingSlotFreqAns_ChannelACK;
if (! raw_f_not_zero) {
freq = FREQ_PING;
} else if (freq == 0) {
ans &= ~MCMD_PingSlotFreqAns_ChannelACK;
}
if (! validDR(dr))
ans &= ~MCMD_PingSlotFreqAns_DataRateACK;
if (ans == (MCMD_PingSlotFreqAns_DataRateACK|MCMD_PingSlotFreqAns_ChannelACK)) {
LMIC.ping.freq = freq;
LMIC.ping.dr = dr;
DO_DEVDB(LMIC.ping.intvExp, pingIntvExp);
DO_DEVDB(LMIC.ping.freq, pingFreq);
DO_DEVDB(LMIC.ping.dr, pingDr);
}
response_fit = put_mac_uplink_byte2(MCMD_PingSlotChannelAns, ans);
break;
}
#endif // !DISABLE_MCMD_PingSlotChannelReq && !DISABLE_PING
#if defined(ENABLE_MCMD_BeaconTimingAns) && !defined(DISABLE_BEACONS)
case MCMD_BeaconTimingAns: {
// Ignore if tracking already enabled
if( (LMIC.opmode & OP_TRACK) == 0 ) {
LMIC.bcnChnl = opts[oidx+3];
// Enable tracking - bcninfoTries
LMIC.opmode |= OP_TRACK;
// Cleared later in txComplete handling - triggers EV_BEACON_FOUND
ASSERT(LMIC.bcninfoTries!=0);
// Setup RX parameters
LMIC.bcninfo.txtime = (LMIC.rxtime
+ ms2osticks(os_rlsbf2(&opts[oidx+1]) * MCMD_BeaconTimingAns_TUNIT)
+ ms2osticksCeil(MCMD_BeaconTimingAns_TUNIT/2)
- BCN_INTV_osticks);
LMIC.bcninfo.flags = 0; // txtime above cannot be used as reference (BCN_PARTIAL|BCN_FULL cleared)
calcBcnRxWindowFromMillis(MCMD_BeaconTimingAns_TUNIT,1); // error of +/-N ms
EV(lostFrame, INFO, (e_.reason = EV::lostFrame_t::MCMD_BeaconTimingAns,
e_.eui = MAIN::CDEV->getEui(),
e_.lostmic = Base::lsbf4(&d[pend]),
e_.info = (LMIC.missedBcns |
(osticks2us(LMIC.bcninfo.txtime + BCN_INTV_osticks
- LMIC.bcnRxtime) << 8)),
e_.time = MAIN::CDEV->ostime2ustime(LMIC.bcninfo.txtime + BCN_INTV_osticks)));
}
break;
} /* end case */
#endif // !ENABLE_MCMD_BeaconTimingAns && !DISABLE_BEACONS
#if LMIC_ENABLE_TxParamSetupReq
case MCMD_TxParamSetupReq: {
uint8_t txParam;
txParam = opts[oidx+1];
// we don't allow unrecognized bits to get to txParam.
txParam &= (MCMD_TxParam_RxDWELL_MASK|
MCMD_TxParam_TxDWELL_MASK|
MCMD_TxParam_MaxEIRP_MASK);
LMIC.txParam = txParam;
response_fit = put_mac_uplink_byte(MCMD_TxParamSetupAns);
break;
} /* end case */
#endif // LMIC_ENABLE_TxParamSetupReq
#if LMIC_ENABLE_DeviceTimeReq
case MCMD_DeviceTimeAns: {
// don't process a spurious downlink.
if ( LMIC.txDeviceTimeReqState == lmic_RequestTimeState_rx ) {
// remember that it's time to notify the client.
LMIC.txDeviceTimeReqState = lmic_RequestTimeState_success;
// the network time is linked to the time of the last TX.
LMIC.localDeviceTime = LMIC.txend;
// save the network time.
// The first 4 bytes contain the seconds since the GPS epoch
// (i.e January the 6th 1980 at 00:00:00 UTC).
// Note: as per the LoRaWAN specs, the octet order for all
// multi-octet fields is little endian
// Note: the casts are necessary, because opts is an array of
// single byte values, and they might overflow when shifted
LMIC.netDeviceTime = ( (lmic_gpstime_t) opts[oidx + 1] ) |
(((lmic_gpstime_t) opts[oidx + 2]) << 8) |
(((lmic_gpstime_t) opts[oidx + 3]) << 16) |
(((lmic_gpstime_t) opts[oidx + 4]) << 24);
// The 5th byte contains the fractional seconds in 2^-8 second steps
LMIC.netDeviceTimeFrac = opts[oidx + 5];
#if LMIC_DEBUG_LEVEL > 0
LMIC_DEBUG_PRINTF("%"LMIC_PRId_ostime_t": MAC command DeviceTimeAns received: seconds_since_gps_epoch=%"PRIu32", fractional_seconds=%d\n", os_getTime(), LMIC.netDeviceTime, LMIC.netDeviceTimeFrac);
#endif
}
break;
} /* end case */
#endif // LMIC_ENABLE_DeviceTimeReq
default: {
// force olen to current oidx so we'll exit the while()
olen = oidx;
break;
} /* end case */
} /* end switch */
/* if we're out of spce for responses, skip to end. */
if (! response_fit) {
olen = oidx;
} else {
oidx += cmdlen;
}
} /* end while */
return oidx;
}
// change the ADR ack request count, unless adr ack is diabled.
static void setAdrAckCount (s2_t count) {
if (LMIC.adrAckReq != LINK_CHECK_OFF) {
LMIC.adrAckReq = count;
}
}
static bit_t decodeFrame (void) {
xref2u1_t d = LMIC.frame;
u1_t hdr = d[0];
u1_t ftype = hdr & HDR_FTYPE;
int dlen = LMIC.dataLen;
#if LMIC_DEBUG_LEVEL > 0
const char *window = (LMIC.txrxFlags & TXRX_DNW1) ? "RX1" : ((LMIC.txrxFlags & TXRX_DNW2) ? "RX2" : "Other");
#endif
if (dlen > 0)
LMICOS_logEventUint32("decodeFrame", (dlen << 8) | (hdr << 0));
if( dlen < OFF_DAT_OPTS+4 ||
(hdr & HDR_MAJOR) != HDR_MAJOR_V1 ||
(ftype != HDR_FTYPE_DADN && ftype != HDR_FTYPE_DCDN) ) {
// Basic sanity checks failed
EV(specCond, WARN, (e_.reason = EV::specCond_t::UNEXPECTED_FRAME,
e_.eui = MAIN::CDEV->getEui(),
e_.info = dlen < 4 ? 0 : os_rlsbf4(&d[dlen-4]),
e_.info2 = hdr + (dlen<<8)));
norx:
#if LMIC_DEBUG_LEVEL > 0
LMIC_DEBUG_PRINTF("%"LMIC_PRId_ostime_t": Invalid downlink, window=%s\n", os_getTime(), window);
#endif
LMIC.dataLen = 0;
return 0;
}
// Validate exact frame length
// Note: device address was already read+evaluated in order to arrive here.
int fct = d[OFF_DAT_FCT];
u4_t addr = os_rlsbf4(&d[OFF_DAT_ADDR]);
u4_t seqno = os_rlsbf2(&d[OFF_DAT_SEQNO]);
int olen = fct & FCT_OPTLEN;
int ackup = (fct & FCT_ACK) != 0 ? 1 : 0; // ACK last up frame
int poff = OFF_DAT_OPTS+olen;
int pend = dlen-4; // MIC
if( addr != LMIC.devaddr ) {
LMICOS_logEventUint32("decodeFrame: wrong address", addr);
EV(specCond, WARN, (e_.reason = EV::specCond_t::ALIEN_ADDRESS,
e_.eui = MAIN::CDEV->getEui(),
e_.info = addr,
e_.info2 = LMIC.devaddr));
goto norx;
}
if( poff > pend ) {
LMICOS_logEventUint32("decodeFrame: corrupted frame", (dlen << 16) | (fct << 8) | (poff - pend));
EV(specCond, ERR, (e_.reason = EV::specCond_t::CORRUPTED_FRAME,
e_.eui = MAIN::CDEV->getEui(),
e_.info = 0x1000000 + (poff-pend) + (fct<<8) + (dlen<<16)));
goto norx;
}
int port = -1;
int replayConf = 0;
if( pend > poff )
port = d[poff++];
// compute the 32-bit sequence number based on the 16-bit sequence number received
// and the internal 32-bit number. Because the 32-bit number is used in the MIC
// calculation, this must be right. (And if you're curious why a 32-bit seqno matters,
// it's this calculation, plus its use in the MIC calculation.)
//
// we have to be careful to get the right value for replay of last message received.
u2_t seqnoDiff = (u2_t)(seqno - LMIC.seqnoDn);
if (seqnoDiff == 0xFFFFu) {
seqno = LMIC.seqnoDn - 1;
} else {
seqno = LMIC.seqnoDn + seqnoDiff;
}
if( !aes_verifyMic(LMIC.nwkKey, LMIC.devaddr, seqno, /*dn*/1, d, pend) ) {
LMICOS_logEventUint32("decodeFrame: bad MIC", os_rlsbf4(&d[pend]));
EV(spe3Cond, ERR, (e_.reason = EV::spe3Cond_t::CORRUPTED_MIC,
e_.eui1 = MAIN::CDEV->getEui(),
e_.info1 = Base::lsbf4(&d[pend]),
e_.info2 = seqno,
e_.info3 = LMIC.devaddr));
goto norx;
}
if( seqno < LMIC.seqnoDn ) {
if( (s4_t)seqno > (s4_t)LMIC.seqnoDn ) {
EV(specCond, INFO, (e_.reason = EV::specCond_t::DNSEQNO_ROLL_OVER,
e_.eui = MAIN::CDEV->getEui(),
e_.info = LMIC.seqnoDn,
e_.info2 = seqno));
LMICOS_logEventUint32("decodeFrame: rollover discarded", (seqno << 16) | (LMIC.lastDnConf << 8) | (ftype << 0));
goto norx;
}
if( seqno != LMIC.seqnoDn-1 || !LMIC.lastDnConf || ftype != HDR_FTYPE_DCDN ) {
EV(specCond, INFO, (e_.reason = EV::specCond_t::DNSEQNO_OBSOLETE,
e_.eui = MAIN::CDEV->getEui(),
e_.info = LMIC.seqnoDn,
e_.info2 = seqno));
LMICOS_logEventUint32("decodeFrame: Retransmit confimed discarded", (seqno << 16) | (LMIC.lastDnConf << 8) | (ftype << 0));
goto norx;
}
// Replay of previous sequence number allowed only if
// previous frame and repeated both requested confirmation
// but set a flag, so we don't actually process the message.
LMICOS_logEventUint32("decodeFrame: Retransmit confimed accepted", (seqno << 16) | (LMIC.lastDnConf << 8) | (ftype << 0));
replayConf = 1;
LMIC.dnConf = FCT_ACK;
}
else {
if( seqnoDiff > LMICbandplan_MAX_FCNT_GAP) {
LMICOS_logEventUint32("decodeFrame: gap too big", (seqnoDiff << 16) | (seqno & 0xFFFFu));
goto norx;
}
if( seqno > LMIC.seqnoDn ) {
EV(specCond, INFO, (e_.reason = EV::specCond_t::DNSEQNO_SKIP,
e_.eui = MAIN::CDEV->getEui(),
e_.info = LMIC.seqnoDn,
e_.info2 = seqno));
}
LMIC.seqnoDn = seqno+1; // next number to be expected
DO_DEVDB(LMIC.seqnoDn,seqnoDn);
// DN frame requested confirmation - provide ACK once with next UP frame
LMIC.dnConf = LMIC.lastDnConf = (ftype == HDR_FTYPE_DCDN ? FCT_ACK : 0);
if (LMIC.dnConf)
LMICOS_logEventUint32("decodeFrame: Confirmed downlink", (seqno << 16) | (LMIC.lastDnConf << 8) | (ftype << 0));
}
if (port == 0 && olen != 0 && pend > poff) {
// we have a port-zero message, and piggyback mac data.
// discard, section 4.3.1.6 line 544-546
#if LMIC_DEBUG_LEVEL > 0
LMIC_DEBUG_PRINTF("%"LMIC_PRId_ostime_t": port==0 && FOptsLen=%#x: discard\n", os_getTime(), olen);
#endif
goto norx;
}
if( LMIC.dnConf || (fct & FCT_MORE) )
LMIC.opmode |= OP_POLL;
// We heard from network
LMIC.adrChanged = LMIC.rejoinCnt = 0;
setAdrAckCount(LINK_CHECK_INIT);
#if !defined(DISABLE_MCMD_RXParamSetupReq)
// We heard from network "on a Class A downlink"
LMIC.dn2Ans = 0;
#endif // !defined(DISABLE_MCMD_RXParamSetupReq)
#if !defined(DISABLE_MCMD_RXTimingSetupReq)
// We heard from network "on a Class A downlink"
LMIC.macRxTimingSetupAns = 0;
#endif // !defined(DISABLE_MCMD_RXParamSetupReq)
#if !defined(DISABLE_MCMD_DlChannelReq) && CFG_LMIC_EU_like
LMIC.macDlChannelAns = 0;
#endif
int m = LMIC.rssi - RSSI_OFF - getSensitivity(LMIC.rps);
// for legacy reasons, LMIC.margin is set to the unsigned sensitivity. It can never be negative.
// it's only computed for legacy clients
LMIC.margin = m < 0 ? 0 : m > 254 ? 254 : m;
// even if it's a replay confirmed, we process the mac options.
xref2u1_t opts = &d[OFF_DAT_OPTS];
int oidx = scan_mac_cmds(opts, olen, port);
if( oidx != olen ) {
EV(specCond, ERR, (e_.reason = EV::specCond_t::CORRUPTED_FRAME,
e_.eui = MAIN::CDEV->getEui(),
e_.info = 0x1000000 + (oidx) + (olen<<8)));
oidx = olen;
}
if( !replayConf ) {
// Handle payload only if not a replay
// Decrypt payload - if any
if( port >= 0 && pend-poff > 0 ) {
aes_cipher(port <= 0 ? LMIC.nwkKey : LMIC.artKey, LMIC.devaddr, seqno, /*dn*/1, d+poff, pend-poff);
if (port == 0) {
// this is a mac command. scan the options.
#if LMIC_DEBUG_LEVEL > 0
LMIC_DEBUG_PRINTF("%"LMIC_PRId_ostime_t": process mac commands for port 0 (olen=%#x)\n", os_getTime(), pend-poff);
#endif
int optendindex = scan_mac_cmds(d+poff, pend-poff, port);
if (optendindex != pend-poff) {
#if LMIC_DEBUG_LEVEL > 0
LMIC_DEBUG_PRINTF(
"%"LMIC_PRId_ostime_t": error processing mac commands for port 0 "
"(len=%#x, optendindex=%#x)\n",
os_getTime(), pend-poff, optendindex
);
#endif
}
// wait to transmit until txcomplete: above.
}
} // end decrypt payload
EV(dfinfo, DEBUG, (e_.deveui = MAIN::CDEV->getEui(),
e_.devaddr = LMIC.devaddr,
e_.seqno = seqno,
e_.flags = (port < 0 ? EV::dfinfo_t::NOPORT : 0) | EV::dfinfo_t::DN,
e_.mic = Base::lsbf4(&d[pend]),
e_.hdr = d[LORA::OFF_DAT_HDR],
e_.fct = d[LORA::OFF_DAT_FCT],
e_.port = port,
e_.plen = dlen,
e_.opts.length = olen,
memcpy(&e_.opts[0], opts, olen)));
} else {
EV(specCond, INFO, (e_.reason = EV::specCond_t::DNSEQNO_REPLAY,
e_.eui = MAIN::CDEV->getEui(),
e_.info = Base::lsbf4(&d[pend]),
e_.info2 = seqno));
// discard the data
LMICOS_logEventUint32("decodeFrame: discarding replay", (seqno << 16) | (LMIC.lastDnConf << 8) | (ftype << 0));
goto norx;
}
if( // NWK acks but we don't have a frame pending
(ackup && LMIC.txCnt == 0) ||
// We sent up confirmed and we got a response in DNW1/DNW2
// BUT it did not carry an ACK - this should never happen
// Do not resend and assume frame was not ACKed.
(!ackup && LMIC.txCnt != 0) ) {
EV(specCond, ERR, (e_.reason = EV::specCond_t::SPURIOUS_ACK,
e_.eui = MAIN::CDEV->getEui(),
e_.info = seqno,
e_.info2 = ackup));
#if LMIC_DEBUG_LEVEL > 1
LMIC_DEBUG_PRINTF("%"LMIC_PRId_ostime_t": ??ack error ack=%d txCnt=%d\n", os_getTime(), ackup, LMIC.txCnt);
#endif
}
if( LMIC.txCnt != 0 ) // we requested an ACK
orTxrxFlags(__func__, ackup ? TXRX_ACK : TXRX_NACK);
if( port <= 0 ) {
orTxrxFlags(__func__, TXRX_NOPORT);
LMIC.dataBeg = poff;
LMIC.dataLen = 0;
} else {
orTxrxFlags(__func__, TXRX_PORT);
LMIC.dataBeg = poff;
LMIC.dataLen = pend-poff;
}
#if LMIC_DEBUG_LEVEL > 0
LMIC_DEBUG_PRINTF("%"LMIC_PRId_ostime_t": Received downlink, window=%s, port=%d, ack=%d, txrxFlags=%#x\n", os_getTime(), window, port, ackup, LMIC.txrxFlags);
#endif
return 1;
}
// ================================================================================
// TX/RX transaction support
// start reception and log.
static void radioRx (void) {
reportEventNoUpdate(EV_RXSTART);
os_radio(RADIO_RX);
}
// start RX in window 2.
static void setupRx2 (void) {
initTxrxFlags(__func__, TXRX_DNW2);
LMIC.rps = dndr2rps(LMIC.dn2Dr);
LMIC.freq = LMIC.dn2Freq;
LMIC.dataLen = 0;
radioRx();
}
ostime_t LMICcore_adjustForDrift (ostime_t delay, ostime_t hsym) {
if (LMIC.client.clockError != 0) {
// Calculate how much the clock will drift maximally after delay has
// passed. This indicates the amount of time we can be early
// _or_ late.
ostime_t drift = (int64_t)delay * LMIC.client.clockError / MAX_CLOCK_ERROR;
// Increase the receive window by twice the maximum drift (to
// compensate for a slow or a fast clock).
delay -= drift;
// adjust rxsyms (the size of the window in syms) according to our
// uncertainty. do this in a strange order to avoid a divide if we can.
// rely on hsym = Tsym / 2
if ((255 - LMIC.rxsyms) * hsym < drift) {
LMIC.rxsyms = 255;
} else {
LMIC.rxsyms = (u1_t) (LMIC.rxsyms + drift / hsym);
}
}
return delay;
}
ostime_t LMICcore_RxWindowOffset (ostime_t hsym, u1_t rxsyms_in) {
ostime_t const Tsym = 2 * hsym;
ostime_t rxsyms;
ostime_t rxoffset;
rxsyms = ((2 * (int)rxsyms_in - 8) * Tsym + LMICbandplan_RX_ERROR_ABS_osticks * 2 + Tsym - 1) / Tsym;
if (rxsyms < rxsyms_in) {
rxsyms = rxsyms_in;
}
LMIC.rxsyms = (u1_t) rxsyms;
rxoffset = (8 - rxsyms) * hsym - LMICbandplan_RX_EXTRA_MARGIN_osticks;
return rxoffset;
}
static void schedRx12 (ostime_t delay, osjobcb_t func, u1_t dr) {
ostime_t hsym = dr2hsym(dr);
// Center the receive window on the center of the expected preamble and timeout.
// (again note that hsym is half a sumbol time, so no /2 needed)
// we leave RX_RAMPUP unadjusted for the clock drift. The IBM LMIC generates delays
// that are too long for SF12, and too short for other SFs, so we follow the
// Semtech reference code.
//
// This also sets LMIC.rxsyms.
LMIC.rxtime = LMIC.txend + LMICcore_adjustForDrift(delay + LMICcore_RxWindowOffset(hsym, LMICbandplan_MINRX_SYMS_LoRa_ClassA), hsym);
LMIC_X_DEBUG_PRINTF("%"LMIC_PRId_ostime_t": sched Rx12 %"LMIC_PRId_ostime_t"\n", os_getTime(), LMIC.rxtime - RX_RAMPUP);
os_setTimedCallback(&LMIC.osjob, LMIC.rxtime - RX_RAMPUP, func);
}
static void setupRx1 (osjobcb_t func) {
initTxrxFlags(__func__, TXRX_DNW1);
// Turn LMIC.rps from TX over to RX
LMIC.rps = setNocrc(LMIC.rps,1);
LMIC.dataLen = 0;
LMIC.osjob.func = func;
radioRx();
}
// Called by HAL once TX complete and delivers exact end of TX time stamp in LMIC.rxtime
static void txDone (ostime_t delay, osjobcb_t func) {
#if !defined(DISABLE_PING)
if( (LMIC.opmode & (OP_TRACK|OP_PINGABLE|OP_PINGINI)) == (OP_TRACK|OP_PINGABLE) ) {
rxschedInit(&LMIC.ping); // note: reuses LMIC.frame buffer!
LMIC.opmode |= OP_PINGINI;
}
#endif // !DISABLE_PING
// Change RX frequency (can happen even for EU-like if programmed by DlChannelReq)
// change params and rps (US only) before we increment txChnl
LMICbandplan_setRx1Params();
// LMIC.rxsyms carries the TX datarate (can be != LMIC.datarate [confirm retries etc.])
// Setup receive - LMIC.rxtime is preloaded with 1.5 symbols offset to tune
// into the middle of the 8 symbols preamble.
if( LMICbandplan_isFSK() ) {
LMICbandplan_txDoneFSK(delay, func);
}
else
{
schedRx12(delay, func, LMIC.dndr);
}
}
// ======================================== Join frames
#if !defined(DISABLE_JOIN)
static void onJoinFailed (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
// Notify app - must call LMIC_reset() to stop joining
// otherwise join procedure continues.
reportEventAndUpdate(EV_JOIN_FAILED);
}
// process join-accept message or deal with no join-accept in slot 2.
static bit_t processJoinAccept (void) {
if ((LMIC.txrxFlags & TXRX_DNW1) != 0 && LMIC.dataLen == 0)
return 0;
ASSERT((LMIC.opmode & OP_TXRXPEND)!=0);
if( LMIC.dataLen == 0 ) {
// we didn't get any data and we're in slot 2. So... there's no join frame.
return processJoinAccept_nojoinframe();
}
u1_t hdr = LMIC.frame[0];
u1_t dlen = LMIC.dataLen;
u4_t mic = os_rlsbf4(&LMIC.frame[dlen-4]); // safe before modified by encrypt!
LMIC_EV_VARIABLE(mic); // only used by EV().
if( (dlen != LEN_JA && dlen != LEN_JAEXT)
|| (hdr & (HDR_FTYPE|HDR_MAJOR)) != (HDR_FTYPE_JACC|HDR_MAJOR_V1) ) {
EV(specCond, ERR, (e_.reason = EV::specCond_t::UNEXPECTED_FRAME,
e_.eui = MAIN::CDEV->getEui(),
e_.info = dlen < 4 ? 0 : mic,
e_.info2 = hdr + (dlen<<8)));
return processJoinAccept_badframe();
}
aes_encrypt(LMIC.frame+1, dlen-1);
if( !aes_verifyMic0(LMIC.frame, dlen-4) ) {
EV(specCond, ERR, (e_.reason = EV::specCond_t::JOIN_BAD_MIC,
e_.info = mic));
return processJoinAccept_badframe();
}
u4_t addr = os_rlsbf4(LMIC.frame+OFF_JA_DEVADDR);
LMIC.devaddr = addr;
LMIC.netid = os_rlsbf4(&LMIC.frame[OFF_JA_NETID]) & 0xFFFFFF;
// initDefaultChannels(0) for EU-like, nothing otherwise
LMICbandplan_joinAcceptChannelClear();
if (!LMICbandplan_hasJoinCFlist() && dlen > LEN_JA) {
// if no JoinCFList, we're supposed to continue
// the join per 2.2.5 of LoRaWAN regional 2.2.4
// https://github.com/mcci-catena/arduino-lmic/issues/19
} else if ( LMICbandplan_hasJoinCFlist() && dlen > LEN_JA ) {
dlen = OFF_CFLIST;
for( u1_t chidx=3; chidx<8; chidx++, dlen+=3 ) {
u4_t freq = LMICbandplan_convFreq(&LMIC.frame[dlen]);
if( freq ) {
LMIC_setupChannel(chidx, freq, 0, -1);
#if LMIC_DEBUG_LEVEL > 1
LMIC_DEBUG_PRINTF("%"LMIC_PRId_ostime_t": Setup channel, idx=%d, freq=%"PRIu32"\n", os_getTime(), chidx, freq);
#endif
}
}
}
// already incremented when JOIN REQ got sent off
aes_sessKeys(LMIC.devNonce-1, &LMIC.frame[OFF_JA_ARTNONCE], LMIC.nwkKey, LMIC.artKey);
DO_DEVDB(LMIC.netid, netid);
DO_DEVDB(LMIC.devaddr, devaddr);
DO_DEVDB(LMIC.nwkKey, nwkkey);
DO_DEVDB(LMIC.artKey, artkey);
EV(joininfo, INFO, (e_.arteui = MAIN::CDEV->getArtEui(),
e_.deveui = MAIN::CDEV->getEui(),
e_.devaddr = LMIC.devaddr,
e_.oldaddr = oldaddr,
e_.nonce = LMIC.devNonce-1,
e_.mic = mic,
e_.reason = ((LMIC.opmode & OP_REJOIN) != 0
? EV::joininfo_t::REJOIN_ACCEPT
: EV::joininfo_t::ACCEPT)));
ASSERT((LMIC.opmode & (OP_JOINING|OP_REJOIN))!=0);
//
// XXX(tmm@mcci.com) OP_REJOIN confuses me, and I'm not sure why we're
// adjusting DRs here. We've just received a join accept, and the
// datarate therefore shouldn't be in play. In effect, we set the
// initial data rate based on the number of times we tried to rejoin.
//
if( (LMIC.opmode & OP_REJOIN) != 0 ) {
#if CFG_region != LMIC_REGION_as923
// TODO(tmm@mcci.com) regionalize
// Lower DR every try below current UP DR
// need to check feasibility? join feasability is default.
LMIC.datarate = lowerDR(LMIC.datarate, LMIC.rejoinCnt);
#else
// in the join of AS923 v1.1 or older, only DR2 (SF10) is used.
// TODO(tmm@mcci.com) if the rejoin logic is at all correct, we
// should be setting the uplink datarate based on the number of
// tries; this doesn't set the AS923 join data rate.
LMIC.datarate = AS923_DR_SF10;
#endif
}
LMIC.opmode &= ~(OP_JOINING|OP_TRACK|OP_REJOIN|OP_TXRXPEND|OP_PINGINI);
LMIC.opmode |= OP_NEXTCHNL;
LMIC.txCnt = 0;
stateJustJoined();
// transition to the ADR_ACK initial state.
setAdrAckCount(LINK_CHECK_INIT);
LMIC.dn2Dr = LMIC.frame[OFF_JA_DLSET] & 0x0F;
LMIC.rx1DrOffset = (LMIC.frame[OFF_JA_DLSET] >> 4) & 0x7;
LMIC.rxDelay = LMIC.frame[OFF_JA_RXDLY];
if (LMIC.rxDelay == 0) LMIC.rxDelay = 1;
reportEventAndUpdate(EV_JOINED);
return 1;
}
static bit_t processJoinAccept_badframe(void) {
if( (LMIC.txrxFlags & TXRX_DNW1) != 0 )
// continue the join process: there's another window.
return 0;
else
// stop the join process
return processJoinAccept_nojoinframe();
}
static bit_t processJoinAccept_nojoinframe(void) {
// Valid states are JOINING (in which caise REJOIN is ignored)
// or ~JOINING and REJOIN. If it's a REJOIN,
// we need to turn off rejoin, signal an event, and increment
// the rejoin-sent count. Internal callers will turn on rejoin
// occasionally.
if( (LMIC.opmode & OP_JOINING) == 0) {
ASSERT((LMIC.opmode & OP_REJOIN) != 0);
LMIC.opmode &= ~(OP_REJOIN|OP_TXRXPEND);
if( LMIC.rejoinCnt < 10 )
LMIC.rejoinCnt++;
reportEventAndUpdate(EV_REJOIN_FAILED);
// stop the join process.
return 1;
}
// otherwise it's a normal join. At end of rx2, so we
// need to schedule something.
LMIC.opmode &= ~OP_TXRXPEND;
reportEventNoUpdate(EV_JOIN_TXCOMPLETE);
int failed = LMICbandplan_nextJoinState();
EV(devCond, DEBUG, (e_.reason = EV::devCond_t::NO_JACC,
e_.eui = MAIN::CDEV->getEui(),
e_.info = LMIC.datarate|DR_PAGE,
e_.info2 = failed));
// Build next JOIN REQUEST with next engineUpdate call
// Optionally, report join failed.
// Both after a random/chosen amount of ticks. That time
// is in LMIC.txend. The delay here is either zero or 1
// tick; onJoinFailed()/runEngineUpdate() are responsible
// for honoring that. XXX(tmm@mcci.com) The IBM 1.6 code
// claimed to return a delay but really returns 0 or 1.
// Once we update as923 to return failed after dr2, we
// can take out this #if.
os_setTimedCallback(&LMIC.osjob, os_getTime()+failed,
failed
? FUNC_ADDR(onJoinFailed) // one JOIN iteration done and failed
: FUNC_ADDR(runEngineUpdate)); // next step to be delayed
// stop this join process.
return 1;
}
static void processRx2Jacc (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
if( LMIC.dataLen == 0 ) {
initTxrxFlags(__func__, 0); // nothing in 1st/2nd DN slot
}
// we're done with this join cycle anyway, so ignore the
// result of processJoinAccept()
(void) processJoinAccept();
}
static void setupRx2Jacc (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
LMIC.osjob.func = FUNC_ADDR(processRx2Jacc);
setupRx2();
}
static void processRx1Jacc (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
if( LMIC.dataLen == 0 || !processJoinAccept() )
schedRx12(DELAY_JACC2_osticks, FUNC_ADDR(setupRx2Jacc), LMIC.dn2Dr);
}
static void setupRx1Jacc (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
setupRx1(FUNC_ADDR(processRx1Jacc));
}
static void jreqDone (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
txDone(DELAY_JACC1_osticks, FUNC_ADDR(setupRx1Jacc));
}
#endif // !DISABLE_JOIN
// ======================================== Data frames
// Fwd decl.
static bit_t processDnData(void);
static void processRx2DnData (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
if( LMIC.dataLen == 0 ) {
initTxrxFlags(__func__, 0); // nothing in 1st/2nd DN slot
// It could be that the gateway *is* sending a reply, but we
// just didn't pick it up. To avoid TX'ing again while the
// gateay is not listening anyway, delay the next transmission
// until DNW2_SAFETY_ZONE from now, and add up to 2 seconds of
// extra randomization.
// BUG(tmm@mcci.com) this delay is not needed for some
// regions, e.g. US915 and AU915, which have non-overlapping
// uplink and downlink.
txDelay(os_getTime() + DNW2_SAFETY_ZONE, 2);
}
processDnData();
}
static void setupRx2DnData (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
LMIC.osjob.func = FUNC_ADDR(processRx2DnData);
setupRx2();
}
static void processRx1DnData (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
if( LMIC.dataLen == 0 || !processDnData() )
schedRx12(sec2osticks(LMIC.rxDelay +(int)DELAY_EXTDNW2), FUNC_ADDR(setupRx2DnData), LMIC.dn2Dr);
}
static void setupRx1DnData (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
setupRx1(FUNC_ADDR(processRx1DnData));
}
static void updataDone (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
txDone(sec2osticks(LMIC.rxDelay), FUNC_ADDR(setupRx1DnData));
}
// ========================================
static bit_t sendAdrAckReq(void) {
if (LMIC.adrAckReq < LINK_CHECK_CONT) {
return 0;
} else if (LMIC.adrAckReq <= LINK_CHECK_DEAD) {
return 1;
} else if (LMIC.adrAckReq <= LINK_CHECK_DEAD + 32) {
// for compliance, though it's not clear why they care, we stop sending requests
// when we're right at the DEAD state
return 0;
} else if (LMIC.adrAckReq <= LINK_CHECK_UNJOIN - 32) {
return 0;
} else {
// otherwise, if our alternative is to unjoin and we have no other info, keep
// asking for a downlink.
return 1;
}
}
static bit_t buildDataFrame (void) {
bit_t txdata = ((LMIC.opmode & (OP_TXDATA|OP_POLL)) != OP_POLL);
u1_t dlen = txdata ? LMIC.pendTxLen : 0;
// Piggyback MAC options
// Prioritize by importance
// highest importance are the ones in the pendMac buffer.
int end = OFF_DAT_OPTS;
if (LMIC.pendTxPort != 0 && LMIC.pendMacPiggyback && LMIC.pendMacLen != 0) {
os_copyMem(LMIC.frame + end, LMIC.pendMacData, LMIC.pendMacLen);
end += LMIC.pendMacLen;
}
LMIC.pendMacLen = 0;
LMIC.pendMacPiggyback = 0;
#if !defined(DISABLE_MCMD_RXParamSetupReq)
// per 5.4, RxParamSetupAns is sticky.
if (LMIC.dn2Ans) {
if (LMIC.dn2Ans & 0x40) {
LMIC.dn2Ans ^= 0x40;
} else {
LMIC.frame[end + 0] = MCMD_RXParamSetupAns;
LMIC.frame[end + 1] = LMIC.dn2Ans & ~MCMD_RXParamSetupAns_RFU;
end += 2;
}
}
#endif // !DISABLE_MCMD_RXParamSetupReq
#if !defined(DISABLE_MCMD_DlChannelReq)
// per 5.4, DlChannelAns is sticky.
if (LMIC.macDlChannelAns) {
if (LMIC.macDlChannelAns & 0x40) {
LMIC.macDlChannelAns ^= 0x40;
} else {
LMIC.frame[end + 0] = MCMD_DlChannelAns;
LMIC.frame[end + 1] = LMIC.macDlChannelAns & ~MCMD_DlChannelAns_RFU;
end += 2;
}
}
#endif // !DISABLE_MCMD_DlChannelReq
#if !defined(DISABLE_MCMD_RXTimingSetupReq)
// per 5.7, RXTimingSetupAns is sticky
if (LMIC.macRxTimingSetupAns == 2) {
LMIC.macRxTimingSetupAns = 1;
} else if (LMIC.macRxTimingSetupAns) {
LMIC.frame[end++] = MCMD_RXTimingSetupAns;
}
#endif // !DISABLE_MCMD_RXTimingSetupReq)
#if LMIC_ENABLE_DeviceTimeReq
if ( LMIC.txDeviceTimeReqState == lmic_RequestTimeState_tx ) {
LMIC.frame[end+0] = MCMD_DeviceTimeReq;
end += 1;
LMIC.txDeviceTimeReqState = lmic_RequestTimeState_rx;
}
#endif // LMIC_ENABLE_DeviceTimeReq
#if !defined(DISABLE_BEACONS) && defined(ENABLE_MCMD_BeaconTimingAns)
if ( LMIC.bcninfoTries > 0 ) {
LMIC.frame[end+0] = MCMD_BeaconInfoReq;
end += 1;
}
#endif
if (end > OFF_DAT_OPTS + 16) {
LMICOS_logEventUint32("piggyback mac opts too long", end);
return 0;
}
if( LMIC.adrChanged ) {
// if ADR is enabled, and we were just counting down the
// transmits before starting an ADR, advance the timer so
// we'll do an ADR now.
if (LMIC.adrAckReq < LINK_CHECK_CONT)
setAdrAckCount(LINK_CHECK_CONT);
LMIC.adrChanged = 0;
}
unsigned int flen = end + (txdata ? 5+dlen : 4);
if( flen > MAX_LEN_FRAME ) {
// Options and payload too big - delay payload
txdata = 0;
flen = end+4;
}
u1_t maxFlen = LMICbandplan_maxFrameLen(LMIC.datarate);
if (flen > maxFlen) {
LMICOS_logEventUint32("frame too long for this bandplan", (dlen << 16) | (flen << 8) | maxFlen);
return 0;
}
LMIC.frame[OFF_DAT_HDR] = HDR_FTYPE_DAUP | HDR_MAJOR_V1;
LMIC.frame[OFF_DAT_FCT] = (LMIC.dnConf | LMIC.adrEnabled
| (sendAdrAckReq() ? FCT_ADRACKReq : 0)
| (end-OFF_DAT_OPTS));
os_wlsbf4(LMIC.frame+OFF_DAT_ADDR, LMIC.devaddr);
if( LMIC.txCnt == 0 && LMIC.upRepeatCount == 0 ) {
LMIC.seqnoUp += 1;
DO_DEVDB(LMIC.seqnoUp,seqnoUp);
} else {
LMICOS_logEventUint32("retransmit", (LMIC.frame[OFF_DAT_FCT] << 24u) | (LMIC.txCnt << 16u) | (LMIC.upRepeatCount << 8u) | (LMIC.upRepeat<<0u));
EV(devCond, INFO, (e_.reason = EV::devCond_t::RE_TX,
e_.eui = MAIN::CDEV->getEui(),
e_.info = LMIC.seqnoUp-1,
e_.info2 = ((LMIC.txCnt+1) |
(LMIC.upRepeatCount << 8) |
((LMIC.datarate|DR_PAGE)<<16))));
}
os_wlsbf2(LMIC.frame+OFF_DAT_SEQNO, LMIC.seqnoUp-1);
// Clear pending DN confirmation
LMIC.dnConf = 0;
if( txdata ) {
if( LMIC.pendTxConf ) {
// Confirmed only makes sense if we have a payload (or at least a port)
LMIC.frame[OFF_DAT_HDR] = HDR_FTYPE_DCUP | HDR_MAJOR_V1;
if( LMIC.txCnt == 0 ) LMIC.txCnt = 1;
} else if (LMIC.upRepeat != 0) {
// we are repeating. So we need to count here.
if (LMIC.upRepeatCount == 0) {
LMIC.upRepeatCount = 1;
}
}
LMIC.frame[end] = LMIC.pendTxPort;
os_copyMem(LMIC.frame+end+1, LMIC.pendTxData, dlen);
aes_cipher(LMIC.pendTxPort==0 ? LMIC.nwkKey : LMIC.artKey,
LMIC.devaddr, LMIC.seqnoUp-1,
/*up*/0, LMIC.frame+end+1, dlen);
}
aes_appendMic(LMIC.nwkKey, LMIC.devaddr, LMIC.seqnoUp-1, /*up*/0, LMIC.frame, flen-4);
EV(dfinfo, DEBUG, (e_.deveui = MAIN::CDEV->getEui(),
e_.devaddr = LMIC.devaddr,
e_.seqno = LMIC.seqnoUp-1,
e_.flags = (LMIC.pendTxPort < 0 ? EV::dfinfo_t::NOPORT : EV::dfinfo_t::NOP),
e_.mic = Base::lsbf4(&LMIC.frame[flen-4]),
e_.hdr = LMIC.frame[LORA::OFF_DAT_HDR],
e_.fct = LMIC.frame[LORA::OFF_DAT_FCT],
e_.port = LMIC.pendTxPort,
e_.plen = txdata ? dlen : 0,
e_.opts.length = end-LORA::OFF_DAT_OPTS,
memcpy(&e_.opts[0], LMIC.frame+LORA::OFF_DAT_OPTS, end-LORA::OFF_DAT_OPTS)));
LMIC.dataLen = flen;
return 1;
}
#if !defined(DISABLE_BEACONS)
// Callback from HAL during scan mode or when job timer expires.
static void onBcnRx (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
// If we arrive via job timer make sure to put radio to rest.
os_radio(RADIO_RST);
os_clearCallback(&LMIC.osjob);
if( LMIC.dataLen == 0 ) {
// Nothing received - timeout
LMIC.opmode &= ~(OP_SCAN | OP_TRACK);
reportEventAndUpdate(EV_SCAN_TIMEOUT);
return;
}
if( ! LMIC_BEACON_SUCCESSFUL(decodeBeacon()) ) {
// Something is wrong with the beacon - continue scan
LMIC.dataLen = 0;
os_radio(RADIO_RXON);
os_setTimedCallback(&LMIC.osjob, LMIC.bcninfo.txtime, FUNC_ADDR(onBcnRx));
return;
}
// Found our 1st beacon
// We don't have a previous beacon to calc some drift - assume
// an max error of 13ms = 128sec*100ppm which is roughly +/-100ppm
calcBcnRxWindowFromMillis(13,1);
LMIC.opmode &= ~OP_SCAN; // turn SCAN off
LMIC.opmode |= OP_TRACK; // auto enable tracking
reportEventAndUpdate(EV_BEACON_FOUND); // can be disabled in callback
}
// Enable receiver to listen to incoming beacons
// netid defines when scan stops (any or specific beacon)
// This mode ends with events: EV_SCAN_TIMEOUT/EV_SCAN_BEACON
// Implicitely cancels any pending TX/RX transaction.
// Also cancels an onpoing joining procedure.
static void startScan (void) {
ASSERT(LMIC.devaddr!=0 && (LMIC.opmode & OP_JOINING)==0);
if( (LMIC.opmode & OP_SHUTDOWN) != 0 )
return;
// Cancel onging TX/RX transaction
LMIC.txCnt = LMIC.dnConf = LMIC.bcninfo.flags = 0;
LMIC.opmode = (LMIC.opmode | OP_SCAN) & ~(OP_TXRXPEND);
LMICbandplan_setBcnRxParams();
LMIC.rxtime = LMIC.bcninfo.txtime = os_getTime() + sec2osticks(BCN_INTV_sec+1);
os_setTimedCallback(&LMIC.osjob, LMIC.rxtime, FUNC_ADDR(onBcnRx));
os_radio(RADIO_RXON);
}
bit_t LMIC_enableTracking (u1_t tryBcnInfo) {
if( (LMIC.opmode & (OP_SCAN|OP_TRACK|OP_SHUTDOWN)) != 0 )
return 0; // already in progress or failed to enable
// If BCN info requested from NWK then app has to take are
// of sending data up so that MCMD_BeaconInfoReq can be attached.
if( (LMIC.bcninfoTries = tryBcnInfo) == 0 )
startScan();
return 1; // enabled
}
void LMIC_disableTracking (void) {
LMIC.opmode &= ~(OP_SCAN|OP_TRACK);
LMIC.bcninfoTries = 0;
engineUpdate();
}
#endif // !DISABLE_BEACONS
// ================================================================================
//
// Join stuff
//
// ================================================================================
#if !defined(DISABLE_JOIN)
static void buildJoinRequest (u1_t ftype) {
// Do not use pendTxData since we might have a pending
// user level frame in there. Use RX holding area instead.
xref2u1_t d = LMIC.frame;
d[OFF_JR_HDR] = ftype;
os_getArtEui(d + OFF_JR_ARTEUI);
os_getDevEui(d + OFF_JR_DEVEUI);
os_wlsbf2(d + OFF_JR_DEVNONCE, LMIC.devNonce);
aes_appendMic0(d, OFF_JR_MIC);
EV(joininfo,INFO,(e_.deveui = MAIN::CDEV->getEui(),
e_.arteui = MAIN::CDEV->getArtEui(),
e_.nonce = LMIC.devNonce,
e_.oldaddr = LMIC.devaddr,
e_.mic = Base::lsbf4(&d[LORA::OFF_JR_MIC]),
e_.reason = ((LMIC.opmode & OP_REJOIN) != 0
? EV::joininfo_t::REJOIN_REQUEST
: EV::joininfo_t::REQUEST)));
LMIC.dataLen = LEN_JR;
LMIC.devNonce++;
DO_DEVDB(LMIC.devNonce,devNonce);
}
static void startJoining (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
// see issue #244: for backwards compatibility
// don't override what the user does after os_init().
if (LMIC.initBandplanAfterReset)
LMICbandplan_resetDefaultChannels();
else
LMIC.initBandplanAfterReset = 1;
// let the client know that now's the time to update
// network settings.
reportEventAndUpdate(EV_JOINING);
}
// reset the joined-to-network state (and clean up)
void LMIC_unjoin(void) {
// reset any joining flags
LMIC.opmode &= ~(OP_SCAN|OP_REJOIN|OP_UNJOIN);
// put us in unjoined state:
LMIC.devaddr = 0;
// clear transmit.
LMIC_clrTxData();
}
// Start join procedure if not already joined.
bit_t LMIC_startJoining (void) {
if( LMIC.devaddr == 0 ) {
// There should be no TX/RX going on
// ASSERT((LMIC.opmode & (OP_POLL|OP_TXRXPEND)) == 0);
LMIC.opmode &= ~OP_POLL;
// Lift any previous duty limitation
LMIC.globalDutyRate = 0;
// Cancel scanning
LMIC.opmode &= ~(OP_SCAN|OP_UNJOIN|OP_REJOIN|OP_LINKDEAD|OP_NEXTCHNL);
// Setup state
LMIC.rejoinCnt = LMIC.txCnt = 0;
resetJoinParams();
LMICbandplan_initJoinLoop();
LMIC.opmode |= OP_JOINING;
// reportEventAndUpdate will call engineUpdate which then starts sending JOIN REQUESTS
os_setCallback(&LMIC.osjob, FUNC_ADDR(startJoining));
return 1;
}
return 0; // already joined
}
static void unjoinAndRejoin(xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
LMIC_unjoin();
LMIC_startJoining();
}
// do a deferred unjoin and rejoin, so not in engineupdate.
void LMIC_unjoinAndRejoin(void) {
os_setCallback(&LMIC.osjob, FUNC_ADDR(unjoinAndRejoin));
}
#endif // !DISABLE_JOIN
// ================================================================================
//
//
//
// ================================================================================
#if !defined(DISABLE_PING)
static void processPingRx (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
if( LMIC.dataLen != 0 ) {
initTxrxFlags(__func__, TXRX_PING);
if( decodeFrame() ) {
reportEventNoUpdate(EV_RXCOMPLETE);
}
}
// Pick next ping slot
engineUpdate();
}
#endif // !DISABLE_PING
// process downlink data at close of RX window. Return zero if another RX window
// should be scheduled, non-zero to prevent scheduling of RX2 (if relevant).
// Confusingly, the caller actualyl does some of the calculation, so the answer from
// us is not always totaly right; the rx1 window check ignores our result unless
// LMIC.datalen was non zero before calling.
//
// Inputs:
// LMIC.dataLen number of bytes receieved; 0 --> no message at all received.
// LMIC.txCnt currnt confirmed uplink count, or 0 for unconfirmed.
// LMIC.txrxflags state of play for the Class A engine and message receipt.
//
// and many other flags in txcomplete().
// forward references.
static bit_t processDnData_norx(void);
static bit_t processDnData_txcomplete(void);
static bit_t processDnData (void) {
ASSERT((LMIC.opmode & OP_TXRXPEND)!=0);
if( LMIC.dataLen == 0 ) {
// if this is an RX1 window, shouldn't we return 0 to schedule
// RX2? in fact, the rx1 caller ignores what we return, and
// norx() doesn't call txcomplete if this is RX1.
return processDnData_norx();
}
// if we get here, LMIC.dataLen != 0, so there is some
// traffic.
else if( !decodeFrame() ) {
// if we are in downlink window 1, we need to schedule
// downlink window 2.
if( (LMIC.txrxFlags & TXRX_DNW1) != 0 )
return 0;
else
// otherwise we are in downlink window 2; we will not
// get any more downlink traffic from this uplink, so we need
// to close the books on this uplink attempt
return processDnData_norx();
}
// downlink frame was accepted. This means that we're done. Except
// there's one bizarre corner case. If we sent a confirmed message
// and got a downlink that didn't have an ACK, we have to retry.
// It is not clear why the network is permitted to do this; the
// fact that they scheduled a downlink for us during one of the RX
// windows is clear confirmation that the uplink made it to the
// network and was valid. However, compliance checks this, so
// we have to handle it and retransmit.
else if (LMIC.txCnt != 0 && (LMIC.txrxFlags & TXRX_NACK) != 0)
{
// grr. we're confirmed but the network downlink did not
// set the ACK bit. We know txCnt is non-zero, so this
// will immediately fall into the retransmit path. We don't
// want to do this unless it's a confirmed uplink.
return processDnData_norx();
}
// the transmit of the uplink is really complete.
else {
return processDnData_txcomplete();
}
}
// nothing was received this window.
static bit_t processDnData_norx(void) {
if( LMIC.txCnt != 0 ) {
if( LMIC.txCnt < TXCONF_ATTEMPTS ) {
// Per [1.0.3] section 18.4, it is recommended that the device adjust datarate down.
// The spec is not clear about what should happen in case the data size is too large
// for the new frame len, but it seems that we should leave theframe len at the new
// data size. Therefore, we set the new data rate here, and then check at transmit time
// whether the packet is now too large; if so, we abandon the transmission.
LMIC.txCnt += 1;
// becase txCnt was at least 1 when we entered this branch, this if() will be taken
// for txCnt == 3, 5, 7.
if (LMIC.txCnt & 1) {
dr_t adjustedDR;
// lower DR
adjustedDR = decDR(LMIC.datarate);
setDrTxpow(DRCHG_NOACK, adjustedDR, KEEP_TXPOW);
}
// TODO(tmm@mcci.com): check feasibility of lower datarate
// Schedule another retransmission
txDelay(LMIC.rxtime, RETRY_PERIOD_secs);
LMIC.opmode &= ~OP_TXRXPEND;
engineUpdate();
return 1;
}
// confirmed uplink is complete without an ack: no port and no flag
initTxrxFlags(__func__, TXRX_NACK | TXRX_NOPORT);
} else if (LMIC.upRepeatCount != 0) {
if (LMIC.upRepeatCount < LMIC.upRepeat) {
LMICOS_logEventUint32("processDnData: repeat", (LMIC.upRepeat<<8u) | (LMIC.upRepeatCount<<0u));
LMIC.upRepeatCount += 1;
txDelay(os_getTime() + ms2osticks(LMICbandplan_TX_RECOVERY_ms), 0);
LMIC.opmode &= ~OP_TXRXPEND;
engineUpdate();
return 1;
}
// counted out: nothing received.
initTxrxFlags(__func__, TXRX_NOPORT);
} else {
// Nothing received - implies no port
initTxrxFlags(__func__, TXRX_NOPORT);
}
setAdrAckCount(LMIC.adrAckReq + 1);
LMIC.dataBeg = LMIC.dataLen = 0;
return processDnData_txcomplete();
}
// this Class-A uplink-and-receive cycle is complete.
static bit_t processDnData_txcomplete(void) {
LMIC.opmode &= ~(OP_TXDATA|OP_TXRXPEND);
// turn off all the repeat stuff.
LMIC.txCnt = LMIC.upRepeatCount = 0;
// if there's pending mac data that's not piggyback, launch it now.
if (LMIC.pendMacLen != 0) {
if (LMIC.pendMacPiggyback) {
LMICOS_logEvent("piggyback mac message");
LMIC.opmode |= OP_POLL; // send back the mac answers even if there's no data.
} else {
// Every mac command on port 0 requires an uplink, if there's data.
// TODO(tmm@mcci.com) -- this is why we need a queueing structure for
// uplinks.
// open code the logic to build this because we don't want to call
// engineUpdate right now. Data is already in the uplink buffer.
LMIC.pendTxConf = 0; // not confirmed
LMIC.pendTxPort = 0; // port 0
LMIC.pendTxLen = LMIC.pendMacLen;
LMIC.pendMacLen = 0; // discard mac data!
LMIC.opmode |= OP_TXDATA;
LMICOS_logEvent("port0 mac message");
}
}
// Half-duplex gateways can have appreciable turn-around times,
// so we force a wait. It might be nice to randomize this a little,
// so that armies of identical devices will not try to talk all
// at once. This is potentially band-specific, so we let it come
// from the band-plan files.
txDelay(os_getTime() + ms2osticks(LMICbandplan_TX_RECOVERY_ms), 0);
#if LMIC_ENABLE_DeviceTimeReq
//
// if the DeviceTimeReq FSM is active, we need to move it to idle,
// completing the callback.
//
lmic_request_time_state_t const requestTimeState = LMIC.txDeviceTimeReqState;
if ( requestTimeState != lmic_RequestTimeState_idle ) {
lmic_request_network_time_cb_t * const pNetworkTimeCb = LMIC.client.pNetworkTimeCb;
int flagSuccess = (LMIC.txDeviceTimeReqState == lmic_RequestTimeState_success);
LMIC.txDeviceTimeReqState = lmic_RequestTimeState_idle;
if (pNetworkTimeCb != NULL) {
// reset the callback, so that the user's routine
// can post another request if desired.
LMIC.client.pNetworkTimeCb = NULL;
// call the user's notification routine.
(*pNetworkTimeCb)(LMIC.client.pNetworkTimeUserData, flagSuccess);
}
}
#endif // LMIC_ENABLE_DeviceTimeReq
if( (LMIC.txrxFlags & (TXRX_DNW1|TXRX_DNW2|TXRX_PING)) != 0 && (LMIC.opmode & OP_LINKDEAD) != 0 ) {
LMIC.opmode &= ~OP_LINKDEAD;
reportEventNoUpdate(EV_LINK_ALIVE);
}
reportEventAndUpdate(EV_TXCOMPLETE);
// If we haven't heard from NWK in a while although we asked for a sign
// assume link is dead - notify application and keep going
if( LMIC.adrAckReq > LINK_CHECK_DEAD ) {
// We haven't heard from NWK for some time although we
// asked for a response for some time - assume we're disconnected. Lower DR one notch.
EV(devCond, ERR, (e_.reason = EV::devCond_t::LINK_DEAD,
e_.eui = MAIN::CDEV->getEui(),
e_.info = LMIC.adrAckReq));
dr_t newDr = decDR((dr_t)LMIC.datarate);
// newDr must be feasible; there must be at least
// one channel that supports the new datarate. If not, stay
// at current datarate (which finalizes things).
if (! LMICbandplan_isDataRateFeasible(newDr)) {
LMICOS_logEventUint32("LINK_CHECK_DEAD, new DR not feasible", (newDr << 8) | LMIC.datarate);
newDr = LMIC.datarate;
}
if( newDr == (dr_t)LMIC.datarate) {
// We are already at the minimum datarate
// if the link is already marked dead, we need to join.
#if !defined(DISABLE_JOIN)
if ( LMIC.adrAckReq > LINK_CHECK_UNJOIN ) {
LMIC.opmode |= OP_UNJOIN;
}
#endif // !defined(DISABLE_JOIN)
} else if (newDr == LORAWAN_DR0) {
// the spec says: the ADRACKReq shall not be set if
// the device uses its lowest available data rate.
// (1.0.3, 4.3.1.1, line 458)
// We let the count continue to increase.
} else {
// we successfully lowered the data rate...
// reset so that we'll lower again after the next
// 32 uplinks.
setAdrAckCount(LINK_CHECK_CONT);
}
// Decrease DataRate and restore fullpower.
setDrTxpow(DRCHG_NOADRACK, newDr, pow2dBm(0));
// be careful only to report EV_LINK_DEAD once.
u2_t old_opmode = LMIC.opmode;
LMIC.opmode = old_opmode | OP_LINKDEAD;
if (LMIC.opmode != old_opmode)
reportEventNoUpdate(EV_LINK_DEAD); // update?
}
#if !defined(DISABLE_BEACONS)
// If this falls to zero the NWK did not answer our MCMD_BeaconInfoReq commands - try full scan
if( LMIC.bcninfoTries > 0 ) {
if( (LMIC.opmode & OP_TRACK) != 0 ) {
reportEventNoUpdate(EV_BEACON_FOUND); // update?
LMIC.bcninfoTries = 0;
}
else if( --LMIC.bcninfoTries == 0 ) {
startScan(); // NWK did not answer - try scan
}
}
#endif // !DISABLE_BEACONS
return 1;
}
#if !defined(DISABLE_BEACONS)
static void processBeacon (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
ostime_t lasttx = LMIC.bcninfo.txtime; // save here - decodeBeacon might overwrite
u1_t flags = LMIC.bcninfo.flags;
ev_t ev;
if( LMIC.dataLen != 0 && LMIC_BEACON_SUCCESSFUL(decodeBeacon()) ) {
ev = EV_BEACON_TRACKED;
if( (flags & (BCN_PARTIAL|BCN_FULL)) == 0 ) {
// We don't have a previous beacon to calc some drift - assume
// an max error of 13ms = 128sec*100ppm which is roughly +/-100ppm
calcBcnRxWindowFromMillis(13,0);
goto rev;
}
// We have a previous BEACON to calculate some drift
s2_t drift = BCN_INTV_osticks - (LMIC.bcninfo.txtime - lasttx);
if( LMIC.missedBcns > 0 ) {
drift = LMIC.drift + (drift - LMIC.drift) / (LMIC.missedBcns+1);
}
if( (LMIC.bcninfo.flags & BCN_NODRIFT) == 0 ) {
s2_t diff = LMIC.drift - drift;
if( diff < 0 ) diff = -diff;
LMIC.lastDriftDiff = diff;
if( LMIC.maxDriftDiff < diff )
LMIC.maxDriftDiff = diff;
LMIC.bcninfo.flags &= ~BCN_NODDIFF;
}
LMIC.drift = drift;
LMIC.missedBcns = LMIC.rejoinCnt = 0;
LMIC.bcninfo.flags &= ~BCN_NODRIFT;
EV(devCond,INFO,(e_.reason = EV::devCond_t::CLOCK_DRIFT,
e_.eui = MAIN::CDEV->getEui(),
e_.info = drift,
e_.info2 = /*occasion BEACON*/0));
ASSERT((LMIC.bcninfo.flags & (BCN_PARTIAL|BCN_FULL)) != 0);
} else {
ev = EV_BEACON_MISSED;
LMIC.bcninfo.txtime += BCN_INTV_osticks - LMIC.drift;
LMIC.bcninfo.time += BCN_INTV_sec;
LMIC.missedBcns++;
// Delay any possible TX after surmised beacon - it's there although we missed it
txDelay(LMIC.bcninfo.txtime + BCN_RESERVE_osticks, 4);
if( LMIC.missedBcns > MAX_MISSED_BCNS )
LMIC.opmode |= OP_REJOIN; // try if we can roam to another network
if( LMIC.bcnRxsyms > MAX_RXSYMS ) {
LMIC.opmode &= ~(OP_TRACK|OP_PINGABLE|OP_PINGINI|OP_REJOIN);
reportEventAndUpdate(EV_LOST_TSYNC);
return;
}
}
LMIC.bcnRxtime = LMIC.bcninfo.txtime + BCN_INTV_osticks - calcRxWindow(0,DR_BCN);
LMIC.bcnRxsyms = LMIC.rxsyms;
rev:
LMICbandplan_advanceBeaconChannel();
#if !defined(DISABLE_PING)
if( (LMIC.opmode & OP_PINGINI) != 0 )
rxschedInit(&LMIC.ping); // note: reuses LMIC.frame buffer!
#endif // !DISABLE_PING
reportEventAndUpdate(ev);
}
// job entry: time to start receiving a beacon.
static void startRxBcn (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
LMIC.osjob.func = FUNC_ADDR(processBeacon);
radioRx();
}
#endif // !DISABLE_BEACONS
#if !defined(DISABLE_PING)
// job entry: time to start receiving in our scheduled downlink slot.
static void startRxPing (xref2osjob_t osjob) {
LMIC_API_PARAMETER(osjob);
LMIC.osjob.func = FUNC_ADDR(processPingRx);
radioRx();
}
#endif // !DISABLE_PING
// Decide what to do next for the MAC layer of a device. Inner part.
// Only called from outer part.
static void engineUpdate_inner (void) {
#if LMIC_DEBUG_LEVEL > 0
LMIC_DEBUG_PRINTF("%"LMIC_PRId_ostime_t": engineUpdate, opmode=0x%x\n", os_getTime(), LMIC.opmode);
#endif
// Check for ongoing state: scan or TX/RX transaction
if( (LMIC.opmode & (OP_SCAN|OP_TXRXPEND|OP_SHUTDOWN)) != 0 )
return;
#if !defined(DISABLE_JOIN)
if( LMIC.devaddr == 0 && (LMIC.opmode & OP_JOINING) == 0 ) {
LMIC_startJoining();
return;
}
// we're joined but LinkTracking says we're out of luck...
if ( LMIC.devaddr != 0 && (LMIC.opmode & OP_UNJOIN) != 0 ) {
LMIC.opmode &= ~OP_UNJOIN;
LMIC_unjoinAndRejoin();
return;
}
#endif // !DISABLE_JOIN
ostime_t now = os_getTime();
ostime_t txbeg = 0;
#if !defined(DISABLE_BEACONS)
ostime_t rxtime = 0;
if( (LMIC.opmode & OP_TRACK) != 0 ) {
// We are tracking a beacon
ASSERT( now + RX_RAMPUP - LMIC.bcnRxtime <= 0 );
rxtime = LMIC.bcnRxtime - RX_RAMPUP;
}
#endif // !DISABLE_BEACONS
if( (LMIC.opmode & (OP_JOINING|OP_REJOIN|OP_TXDATA|OP_POLL)) != 0 ) {
// Assuming txChnl points to channel which first becomes available again.
bit_t jacc = ((LMIC.opmode & (OP_JOINING|OP_REJOIN)) != 0 ? 1 : 0);
// Find next suitable channel and return availability time
if( (LMIC.opmode & OP_NEXTCHNL) != 0 ) {
txbeg = LMIC.txend = LMICbandplan_nextTx(now);
LMIC.opmode &= ~OP_NEXTCHNL;
} else {
// no need to consider anything but LMIC.txend.
txbeg = LMIC.txend;
}
// Delayed TX or waiting for duty cycle?
if( (LMIC.globalDutyRate != 0 || (LMIC.opmode & OP_RNDTX) != 0) && (txbeg - LMIC.globalDutyAvail) < 0 )
txbeg = LMIC.globalDutyAvail;
#if !defined(DISABLE_BEACONS)
// If we're tracking a beacon...
// then make sure TX-RX transaction is complete before beacon
if( (LMIC.opmode & OP_TRACK) != 0 &&
txbeg + (jacc ? JOIN_GUARD_osticks : TXRX_GUARD_osticks) - rxtime > 0 ) {
// Not enough time to complete TX-RX before beacon - postpone after beacon.
// In order to avoid clustering of postponed TX right after beacon randomize start!
txDelay(rxtime + BCN_RESERVE_osticks, 16);
txbeg = 0;
goto checkrx;
}
#endif // !DISABLE_BEACONS
// Earliest possible time vs overhead to setup radio
if( txbeg - (now + TX_RAMPUP) < 0 ) {
// We could send right now!
txbeg = now;
dr_t txdr = (dr_t)LMIC.datarate;
#if !defined(DISABLE_JOIN)
if( jacc ) {
u1_t ftype;
if( (LMIC.opmode & OP_REJOIN) != 0 ) {
#if CFG_region != LMIC_REGION_as923
// in AS923 v1.1 or older, no need to change the datarate.
// otherwise we need to check feasibility.
txdr = lowerDR(txdr, LMIC.rejoinCnt);
#endif
}
ftype = HDR_FTYPE_JREQ;
buildJoinRequest(ftype);
LMIC.osjob.func = FUNC_ADDR(jreqDone);
} else
#endif // !DISABLE_JOIN
{
if( LMIC.seqnoDn >= 0xFFFFFF80 ) {
// Imminent roll over - proactively reset MAC
EV(specCond, INFO, (e_.reason = EV::specCond_t::DNSEQNO_ROLL_OVER,
e_.eui = MAIN::CDEV->getEui(),
e_.info = LMIC.seqnoDn,
e_.info2 = 0));
// Device has to react! NWK will not roll over and just stop sending.
// Thus, we have N frames to detect a possible lock up.
reset:
os_setCallback(&LMIC.osjob, FUNC_ADDR(runReset));
return;
}
if( (LMIC.txCnt==0 && LMIC.seqnoUp == 0xFFFFFFFF) ) {
// Roll over of up seq counter
EV(specCond, ERR, (e_.reason = EV::specCond_t::UPSEQNO_ROLL_OVER,
e_.eui = MAIN::CDEV->getEui(),
e_.info2 = LMIC.seqnoUp));
// Do not run RESET event callback from here!
// App code might do some stuff after send unaware of RESET.
goto reset;
}
if (! buildDataFrame()) {
// can't transmit this message. Report completion.
initTxrxFlags(__func__, TXRX_LENERR);
if (LMIC.pendTxConf || LMIC.txCnt) {
orTxrxFlags(__func__, TXRX_NACK);
}
LMIC.opmode &= ~(OP_POLL|OP_RNDTX|OP_TXDATA|OP_TXRXPEND);
LMIC.dataBeg = LMIC.dataLen = 0;
reportEventNoUpdate(EV_TXCOMPLETE);
return;
}
LMIC.osjob.func = FUNC_ADDR(updataDone);
} // end of else (not joining)
LMIC.rps = setCr(updr2rps(txdr), (cr_t)LMIC.errcr);
LMIC.dndr = txdr; // carry TX datarate (can be != LMIC.datarate) over to txDone/setupRx1
LMIC.opmode = (LMIC.opmode & ~(OP_POLL|OP_RNDTX)) | OP_TXRXPEND | OP_NEXTCHNL;
LMICbandplan_updateTx(txbeg);
// limit power to value asked in adr
LMIC.radio_txpow = LMIC.txpow > LMIC.adrTxPow ? LMIC.adrTxPow : LMIC.txpow;
reportEventNoUpdate(EV_TXSTART);
os_radio(RADIO_TX);
return;
}
// Cannot yet TX
if( (LMIC.opmode & OP_TRACK) == 0 )
goto txdelay; // We don't track the beacon - nothing else to do - so wait for the time to TX
// Consider RX tasks
if( txbeg == 0 ) // zero indicates no TX pending
txbeg += 1; // TX delayed by one tick (insignificant amount of time)
} else {
// No TX pending - no scheduled RX
if( (LMIC.opmode & OP_TRACK) == 0 )
return;
}
#if !defined(DISABLE_BEACONS)
// Are we pingable?
checkrx:
#if !defined(DISABLE_PING)
if( (LMIC.opmode & OP_PINGINI) != 0 ) {
// One more RX slot in this beacon period?
if( rxschedNext(&LMIC.ping, now+RX_RAMPUP) ) {
if( txbeg != 0 && (txbeg - LMIC.ping.rxtime) < 0 )
goto txdelay;
LMIC.rxsyms = LMIC.ping.rxsyms;
LMIC.rxtime = LMIC.ping.rxtime;
LMIC.freq = LMIC.ping.freq;
LMIC.rps = dndr2rps(LMIC.ping.dr);
LMIC.dataLen = 0;
ASSERT(LMIC.rxtime - now+RX_RAMPUP >= 0 );
os_setTimedCallback(&LMIC.osjob, LMIC.rxtime - RX_RAMPUP, FUNC_ADDR(startRxPing));
return;
}
// no - just wait for the beacon
}
#endif // !DISABLE_PING
if( txbeg != 0 && (txbeg - rxtime) < 0 )
goto txdelay;
LMICbandplan_setBcnRxParams();
LMIC.rxsyms = LMIC.bcnRxsyms;
LMIC.rxtime = LMIC.bcnRxtime;
if( now - rxtime >= 0 ) {
LMIC.osjob.func = FUNC_ADDR(processBeacon);
radioRx();
return;
}
os_setTimedCallback(&LMIC.osjob, rxtime, FUNC_ADDR(startRxBcn));
return;
#endif // !DISABLE_BEACONS
txdelay:
EV(devCond, INFO, (e_.reason = EV::devCond_t::TX_DELAY,
e_.eui = MAIN::CDEV->getEui(),
e_.info = osticks2ms(txbeg-now),
e_.info2 = LMIC.seqnoUp-1));
LMIC_X_DEBUG_PRINTF("%"LMIC_PRId_ostime_t": next engine update in %"LMIC_PRId_ostime_t"\n", now, txbeg-TX_RAMPUP);
os_setTimedCallback(&LMIC.osjob, txbeg-TX_RAMPUP, FUNC_ADDR(runEngineUpdate));
}
// Decide what to do next for the MAC layer of a device.
// Outer part. Safe to call from anywhere; defers if it
// detects a recursive call.
static void engineUpdate (void) {
lmic_engine_update_state_t state;
state = LMIC.engineUpdateState;
if (state == lmic_EngineUpdateState_idle) {
LMIC.engineUpdateState = lmic_EngineUpdateState_busy;
do {
engineUpdate_inner();
state = LMIC.engineUpdateState - 1;
LMIC.engineUpdateState = state;
} while (state != lmic_EngineUpdateState_idle);
} else {
LMIC.engineUpdateState = lmic_EngineUpdateState_again;
}
}
void LMIC_setAdrMode (bit_t enabled) {
LMIC.adrEnabled = enabled ? FCT_ADREN : 0;
}
// Should we have/need an ext. API like this?
void LMIC_setDrTxpow (dr_t dr, s1_t txpow) {
setDrTxpow(DRCHG_SET, dr, txpow);
}
void LMIC_shutdown (void) {
os_clearCallback(&LMIC.osjob);
os_radio(RADIO_RST);
LMIC.opmode |= OP_SHUTDOWN;
}
// reset the LMIC. This is called at startup; the clear of LMIC.osjob
// only works because the LMIC is guaranteed to be zero in that case.
// But it's also called at frame-count rollover; in that case we have
// to ensure that the user callback pointers are not clobbered.
void LMIC_reset (void) {
EV(devCond, INFO, (e_.reason = EV::devCond_t::LMIC_EV,
e_.eui = MAIN::CDEV->getEui(),
e_.info = EV_RESET));
os_radio(RADIO_RST);
os_clearCallback(&LMIC.osjob);
// save callback info, clear LMIC, restore.
do {
lmic_client_data_t client = LMIC.client;
os_clearMem((xref2u1_t)&LMIC,SIZEOFEXPR(LMIC));
LMIC.client = client;
} while (0);
// LMIC.devaddr = 0; // true from os_clearMem().
LMIC.devNonce = os_getRndU2();
LMIC.opmode = OP_NONE;
LMIC.errcr = CR_4_5;
LMIC.adrEnabled = FCT_ADREN;
resetJoinParams();
LMIC.rxDelay = DELAY_DNW1;
#if !defined(DISABLE_PING)
LMIC.ping.freq = FREQ_PING; // defaults for ping
LMIC.ping.dr = DR_PING; // ditto
LMIC.ping.intvExp = 0xFF;
#endif // !DISABLE_PING
LMICbandplan_resetDefaultChannels();
DO_DEVDB(LMIC.devaddr, devaddr);
DO_DEVDB(LMIC.devNonce, devNonce);
DO_DEVDB(LMIC.dn2Dr, dn2Dr);
DO_DEVDB(LMIC.dn2Freq, dn2Freq);
#if !defined(DISABLE_PING)
DO_DEVDB(LMIC.ping.freq, pingFreq);
DO_DEVDB(LMIC.ping.dr, pingDr);
DO_DEVDB(LMIC.ping.intvExp, pingIntvExp);
#endif // !DISABLE_PING
#if LMIC_ENABLE_DeviceTimeReq
LMIC.txDeviceTimeReqState = lmic_RequestTimeState_idle;
LMIC.netDeviceTime = 0; // the "invalid" time.
LMIC.netDeviceTimeFrac = 0;
#endif // LMIC_ENABLE_DeviceTimeReq
}
void LMIC_init (void) {
LMIC.opmode = OP_SHUTDOWN;
LMICbandplan_init();
}
void LMIC_clrTxData (void) {
u2_t opmode = LMIC.opmode;
bit_t const txActive = opmode & OP_TXDATA;
if (! txActive) {
return;
}
LMIC.pendTxLen = 0;
opmode &= ~(OP_TXDATA | OP_POLL);
if (! (opmode & OP_JOINING)) {
// in this case, we are joining, and the TX data
// is just pending.
opmode &= ~(OP_TXRXPEND);
}
LMIC.opmode = opmode;
if (txActive)
reportEventNoUpdate(EV_TXCANCELED);
if( (LMIC.opmode & (OP_JOINING|OP_SCAN)) != 0 ) // do not interfere with JOINING
return;
os_clearCallback(&LMIC.osjob);
os_radio(RADIO_RST);
engineUpdate();
}
dr_t LMIC_feasibleDataRateForFrame(dr_t dr, u1_t payloadSize) {
if (payloadSize > MAX_LEN_PAYLOAD) {
return dr;
}
const u1_t frameSize = payloadSize + OFF_DAT_OPTS + 5;
dr_t trialDr, nextDr;
for (trialDr = dr; ;) {
if (! LMICbandplan_isDataRateFeasible(trialDr))
break;
u1_t maxSizeThisDr = LMICbandplan_maxFrameLen(trialDr);
if (maxSizeThisDr == 0) {
break;
} else if (frameSize <= maxSizeThisDr) {
// we found one that is feasible!
return trialDr;
}
// try the next DR
nextDr = incDR(trialDr);
if (nextDr == trialDr)
break;
trialDr = nextDr;
}
// if we get here, we didn't find a working dr.
return dr;
}
static bit_t isTxPathBusy(void) {
return (LMIC.opmode & (OP_TXDATA|OP_JOINING)) != 0;
}
static bit_t adjustDrForFrameIfNotBusy(u1_t len) {
if (isTxPathBusy()) {
return 0;
}
dr_t newDr = LMIC_feasibleDataRateForFrame(LMIC.datarate, len);
if (newDr != LMIC.datarate) {
setDrTxpow(DRCHG_FRAMESIZE, newDr, KEEP_TXPOW);
}
return 1;
}
void LMIC_setTxData (void) {
adjustDrForFrameIfNotBusy(LMIC.pendTxLen);
LMIC_setTxData_strict();
}
void LMIC_setTxData_strict (void) {
LMICOS_logEventUint32(__func__, (LMIC.pendTxPort << 24u) | (LMIC.pendTxConf << 16u) | (LMIC.pendTxLen << 0u));
LMIC.opmode |= OP_TXDATA;
if( (LMIC.opmode & OP_JOINING) == 0 ) {
LMIC.txCnt = 0; // reset the confirmed uplink FSM
LMIC.upRepeatCount = 0; // reset the unconfirmed repeat FSM
}
engineUpdate();
}
// send a message, attempting to adjust TX data rate
lmic_tx_error_t LMIC_setTxData2 (u1_t port, xref2u1_t data, u1_t dlen, u1_t confirmed) {
adjustDrForFrameIfNotBusy(dlen);
return LMIC_setTxData2_strict(port, data, dlen, confirmed);
}
// send a message w/o callback; do not adjust data rate
lmic_tx_error_t LMIC_setTxData2_strict (u1_t port, xref2u1_t data, u1_t dlen, u1_t confirmed) {
if ( LMIC.opmode & OP_TXDATA ) {
// already have a message queued
return LMIC_ERROR_TX_BUSY;
}
if( dlen > SIZEOFEXPR(LMIC.pendTxData) )
return LMIC_ERROR_TX_TOO_LARGE;
if( data != (xref2u1_t)0 )
os_copyMem(LMIC.pendTxData, data, dlen);
LMIC.pendTxConf = confirmed;
LMIC.pendTxPort = port;
LMIC.pendTxLen = dlen;
LMIC_setTxData_strict();
if ( (LMIC.opmode & OP_TXDATA) == 0 ) {
if (LMIC.txrxFlags & TXRX_LENERR) {
return LMIC_ERROR_TX_NOT_FEASIBLE;
} else {
// data has already been completed with error for some reason
return LMIC_ERROR_TX_FAILED;
}
}
return 0;
}
// send a message with callback; try to adjust data rate
lmic_tx_error_t LMIC_sendWithCallback (
u1_t port, xref2u1_t data, u1_t dlen, u1_t confirmed,
lmic_txmessage_cb_t *pCb, void *pUserData
) {
adjustDrForFrameIfNotBusy(dlen);
return LMIC_sendWithCallback_strict(port, data, dlen, confirmed, pCb, pUserData);
}
// send a message with callback; do not adjust datarate
lmic_tx_error_t LMIC_sendWithCallback_strict (
u1_t port, xref2u1_t data, u1_t dlen, u1_t confirmed,
lmic_txmessage_cb_t *pCb, void *pUserData
) {
lmic_tx_error_t const result = LMIC_setTxData2_strict(port, data, dlen, confirmed);
if (result == 0) {
LMIC.client.txMessageCb = pCb;
LMIC.client.txMessageUserData = pUserData;
}
return result;
}
// Send a payload-less message to signal device is alive
void LMIC_sendAlive (void) {
LMIC.opmode |= OP_POLL;
engineUpdate();
}
// Check if other networks are around.
void LMIC_tryRejoin (void) {
LMIC.opmode |= OP_REJOIN;
engineUpdate();
}
//! \brief Setup given session keys
//! and put the MAC in a state as if
//! a join request/accept would have negotiated just these keys.
//! It is crucial that the combinations `devaddr/nwkkey` and `devaddr/artkey`
//! are unique within the network identified by `netid`.
//! NOTE: on Harvard architectures when session keys are in flash:
//! Caller has to fill in LMIC.{nwk,art}Key before and pass {nwk,art}Key are NULL
//! \param netid a 24 bit number describing the network id this device is using
//! \param devaddr the 32 bit session address of the device. It is strongly recommended
//! to ensure that different devices use different numbers with high probability.
//! \param nwkKey the 16 byte network session key used for message integrity.
//! If NULL the caller has copied the key into `LMIC.nwkKey` before.
//! \param artKey the 16 byte application router session key used for message confidentiality.
//! If NULL the caller has copied the key into `LMIC.artKey` before.
// TODO(tmm@mcci.com) we ought to also save the channels that were returned by the
// join accept; right now this has to be done by the caller (or it doesn't get done).
void LMIC_setSession (u4_t netid, devaddr_t devaddr, xref2u1_t nwkKey, xref2u1_t artKey) {
LMIC.netid = netid;
LMIC.devaddr = devaddr;
if( nwkKey != (xref2u1_t)0 )
os_copyMem(LMIC.nwkKey, nwkKey, 16);
if( artKey != (xref2u1_t)0 )
os_copyMem(LMIC.artKey, artKey, 16);
LMICbandplan_setSessionInitDefaultChannels();
LMIC.opmode &= ~(OP_JOINING|OP_TRACK|OP_UNJOIN|OP_REJOIN|OP_TXRXPEND|OP_PINGINI);
LMIC.opmode |= OP_NEXTCHNL;
stateJustJoined();
// transition to the ADR_ACK_DELAY state.
setAdrAckCount(LINK_CHECK_CONT);
DO_DEVDB(LMIC.netid, netid);
DO_DEVDB(LMIC.devaddr, devaddr);
DO_DEVDB(LMIC.nwkKey, nwkkey);
DO_DEVDB(LMIC.artKey, artkey);
DO_DEVDB(LMIC.seqnoUp, seqnoUp);
DO_DEVDB(LMIC.seqnoDn, seqnoDn);
}
// Enable/disable link check validation.
// LMIC sets the ADRACKREQ bit in UP frames if there were no DN frames
// for a while. It expects the network to provide a DN message to prove
// connectivity with a span of UP frames. If this no such prove is coming
// then the datarate is lowered and a LINK_DEAD event is generated.
// This mode can be disabled and no connectivity prove (ADRACKREQ) is requested
// nor is the datarate changed.
// This must be called only if a session is established (e.g. after EV_JOINED)
void LMIC_setLinkCheckMode (bit_t enabled) {
LMIC.adrChanged = 0;
LMIC.adrAckReq = enabled ? LINK_CHECK_INIT : LINK_CHECK_OFF;
}
// Sets the max clock error to compensate for (defaults to 0, which
// allows for +/- 640 at SF7BW250). MAX_CLOCK_ERROR represents +/-100%,
// so e.g. for a +/-1% error you would pass MAX_CLOCK_ERROR * 1 / 100.
void LMIC_setClockError(u2_t error) {
LMIC.client.clockError = error;
}
// \brief return the uplink sequence number for the next transmission.
// This simple getter returns the uplink sequence number maintained by the LMIC engine.
// The caller should store the value and restore it (see LMIC_setSeqnoUp) on
// LMIC initialization to ensure monotonically increasing sequence numbers.
// It's also useful in debugging, as it allows you to correlate a debug trace event with
// a specific packet sent over the air.
u4_t LMIC_getSeqnoUp(void) {
return LMIC.seqnoUp;
}
// \brief set the uplink sequence number for the next transmission.
// Use the function on startup to ensure that the next transmission uses
// a sequence number higher than the last transmission.
u4_t LMIC_setSeqnoUp(u4_t seq_no) {
u4_t last = LMIC.seqnoUp;
LMIC.seqnoUp = seq_no;
return last;
}
// \brief return the current session keys returned from join.
void LMIC_getSessionKeys (u4_t *netid, devaddr_t *devaddr, xref2u1_t nwkKey, xref2u1_t artKey) {
*netid = LMIC.netid;
*devaddr = LMIC.devaddr;
memcpy(artKey, LMIC.artKey, sizeof(LMIC.artKey));
memcpy(nwkKey, LMIC.nwkKey, sizeof(LMIC.nwkKey));
}
// \brief post an asynchronous request for the network time.
void LMIC_requestNetworkTime(lmic_request_network_time_cb_t *pCallbackfn, void *pUserData) {
#if LMIC_ENABLE_DeviceTimeReq
if (LMIC.txDeviceTimeReqState == lmic_RequestTimeState_idle) {
LMIC.txDeviceTimeReqState = lmic_RequestTimeState_tx;
LMIC.client.pNetworkTimeCb = pCallbackfn;
LMIC.client.pNetworkTimeUserData = pUserData;
return;
}
#endif // LMIC_ENABLE_DeviceTimeReq
// if no device time support, or if not in proper state,
// report a failure.
if (pCallbackfn != NULL)
(*pCallbackfn)(pUserData, /* false */ 0);
}
// \brief return local/remote time pair (if valid, and DeviceTimeReq enabled),
// return true for success, false for error. We adjust the sampled OS time
// back in time to the nearest second boundary.
int LMIC_getNetworkTimeReference(lmic_time_reference_t *pReference) {
#if LMIC_ENABLE_DeviceTimeReq
if (pReference != NULL && // valid parameter, and
LMIC.netDeviceTime != 0) { // ... we have a reasonable answer.
const ostime_t tAdjust = LMIC.netDeviceTimeFrac * ms2osticks(1000) / 256;
pReference->tLocal = LMIC.localDeviceTime - tAdjust;
pReference->tNetwork = LMIC.netDeviceTime;
return 1;
}
#endif // LMIC_ENABLE_DeviceTimeReq
return 0;
}