ttn-esp32/include/TheThingsNetwork.h

777 lines
23 KiB
C++

/*******************************************************************************
*
* ttn-esp32 - The Things Network device library for ESP-IDF / SX127x
*
* Copyright (c) 2018-2021 Manuel Bleichenbacher
*
* Licensed under MIT License
* https://opensource.org/licenses/MIT
*
* High-level C++ API for ttn-esp32.
*******************************************************************************/
/**
* @file TheThingsNetwork.h
*/
#ifndef _THETHINGSNETWORK_H_
#define _THETHINGSNETWORK_H_
#include "ttn.h"
/**
* @brief Integer data type for specified the port of an uplink or downlink message.
*
* @deprecated Use @ref ttn_port_t instead.
*/
typedef ttn_port_t port_t;
/**
* @brief Response codes
*/
enum TTNResponseCode
{
/** @brief Transmission failed error */
kTTNErrorTransmissionFailed = TTN_ERROR_TRANSMISSION_FAILED,
/** @brief Unexpected or internal error */
kTTNErrorUnexpected = TTN_ERROR_UNEXPECTED,
/** @brief Successful transmission of an uplink message */
kTTNSuccessfulTransmission = TTN_SUCCESSFUL_TRANSMISSION,
/** @brief Successful receipt of a downlink message */
kTTNSuccessfulReceive = TTN_SUCCESSFUL_RECEIVE
};
/**
* @brief RX/TX window
*/
enum TTNRxTxWindow
{
/**
* @brief Outside RX/TX window
*/
kTTNIdleWindow = TTN_WINDOW_IDLE,
/**
* @brief Transmission window (up to RX1 window)
*/
kTTNTxWindow = TTN_WINDOW_TX,
/**
* @brief Reception window 1 (up to RX2 window)
*/
kTTNRx1Window = TTN_WINDOW_RX1,
/**
* @brief Reception window 2
*/
kTTNRx2Window = TTN_WINDOW_RX2
};
/**
* @brief Spreading Factor
*/
enum TTNSpreadingFactor
{
/**
* @brief Unused / undefined spreading factor
*/
kTTNSFNone = TTN_SF_NONE,
/**
* @brief Frequency Shift Keying (FSK)
*/
kTTNFSK = TTN_FSK,
/**
* @brief Spreading Factor 7 (SF7)
*/
kTTNSF7 = TTN_SF7,
/**
* @brief Spreading Factor 8 (SF8)
*/
kTTNSF8 = TTN_SF8,
/**
* @brief Spreading Factor 9 (SF9)
*/
kTTNSF9 = TTN_SF9,
/**
* @brief Spreading Factor 10 (SF10)
*/
kTTNSF10 = TTN_SF10,
/**
* @brief Spreading Factor 11 (SF11)
*/
kTTNSF11 = TTN_SF11,
/**
* @brief Spreading Factor 12 (SF12)
*/
kTTNSF12 = TTN_SF12
};
/**
* @brief Bandwidth
*/
enum TTNBandwidth
{
/**
* @brief Undefined/unused bandwidth
*/
kTTNBWNone = TTN_BW_NONE,
/**
* @brief Bandwidth of 125 kHz
*/
kTTNBW125 = TTN_BW_125,
/**
* @brief Bandwidth of 250 kHz
*/
kTTNBW250 = TTN_BW_250,
/**
* @brief Bandwidth of 500 kHz
*/
kTTNBW500 = TTN_BW_500
};
/**
* @brief Data Rate
*
* Note that the spreading factor, bandwidth, bit rate and maximum message
* size associated with each data rate depends on the region.
*/
enum TTNDataRate
{
/**
* @brief Data rate for region AS923 using SF12 and 125 kHz bandwidth.
*/
kTTNDataRate_AS923_SF12 = 0,
/**
* @brief Data rate for region AS923 using SF11 and 125 kHz bandwidth.
*/
kTTNDataRate_AS923_SF11 = 1,
/**
* @brief Data rate for region AS923 using SF10 and 125 kHz bandwidth.
*/
kTTNDataRate_AS923_SF10 = 2,
/**
* @brief Data rate for region AS923 using SF9 and 125 kHz bandwidth.
*/
kTTNDataRate_AS923_SF9 = 3,
/**
* @brief Data rate for region AS923 using SF8 and 125 kHz bandwidth.
*/
kTTNDataRate_AS923_SF8 = 4,
/**
* @brief Data rate for region AS923 using SF7 and 125 kHz bandwidth.
*/
kTTNDataRate_AS923_SF7_BW125 = 5,
/**
* @brief Data rate for region AS923 using SF7 and 250 kHz bandwidth.
*/
kTTNDataRate_AS923_SF7_BW250 = 6,
/**
* @brief Data rate for region AS923 using FSK and 50 kpbs.
*/
kTTNDataRate_AS923_FSK = 7,
/**
* @brief Data rate for region AU915 using SF12 and 125 kHz bandwidth.
*/
kTTNDataRate_AU915_SF12 = 0,
/**
* @brief Data rate for region AU915 using SF11 and 125 kHz bandwidth.
*/
kTTNDataRate_AU915_SF11 = 1,
/**
* @brief Data rate for region AU915 using SF10 and 125 kHz bandwidth.
*/
kTTNDataRate_AU915_SF10 = 2,
/**
* @brief Data rate for region AU915 using SF9 and 125 kHz bandwidth.
*/
kTTNDataRate_AU915_SF9 = 3,
/**
* @brief Data rate for region AU915 using SF8 and 125 kHz bandwidth.
*/
kTTNDataRate_AU915_SF8 = 4,
/**
* @brief Data rate for region AU915 using SF7 and 125 kHz bandwidth.
*/
kTTNDataRate_AU915_SF7 = 5,
/**
* @brief Data rate for region AU915 using SF8 and 500 kHz bandwidth.
*/
kTTNDataRate_AU915_SF8_BW500 = 6,
/**
* @brief Data rate for region AU915 using SF12 and 500 kHz bandwidth.
*
* Reserved for future applications.
*/
kTTNDataRate_AU915_SF12_BW500 = 8,
/**
* @brief Data rate for region AU915 using SF11 and 500 kHz bandwidth.
*
* Reserved for future applications.
*/
kTTNDataRate_AU915_SF11_BW500 = 9,
/**
* @brief Data rate for region AU915 using SF10 and 500 kHz bandwidth.
*
* Reserved for future applications.
*/
kTTNDataRate_AU915_SF10_BW500 = 10,
/**
* @brief Data rate for region AU915 using SF9 and 500 kHz bandwidth.
*
* Reserved for future applications.
*/
kTTNDataRate_AU915_SF9_BW500 = 11,
/**
* @brief Data rate for region AU915 using SF8 and 500 kHz bandwidth.
*
* Reserved for future applications.
*/
kTTNDataRate_AU915_SF8_BW500_DR12 = 12,
/**
* @brief Data rate for region AU915 using SF7 and 500 kHz bandwidth.
*
* Reserved for future applications.
*/
kTTNDataRate_AU915_SF7_BW500 = 13,
/**
* @brief Data rate for region EU868 using SF12 and 125 kHz bandwidth.
*/
kTTNDataRate_EU868_SF12 = 0,
/**
* @brief Data rate for region EU868 using SF11 and 125 kHz bandwidth.
*/
kTTNDataRate_EU868_SF11 = 1,
/**
* @brief Data rate for region EU868 using SF10 and 125 kHz bandwidth.
*/
kTTNDataRate_EU868_SF10 = 2,
/**
* @brief Data rate for region EU868 using SF9 and 125 kHz bandwidth.
*/
kTTNDataRate_EU868_SF9 = 3,
/**
* @brief Data rate for region EU868 using SF8 and 125 kHz bandwidth.
*/
kTTNDataRate_EU868_SF8 = 4,
/**
* @brief Data rate for region EU868 using SF7 and 125 kHz bandwidth.
*/
kTTNDataRate_EU868_SF7_BW125 = 5,
/**
* @brief Data rate for region EU868 using SF7 and 250 kHz bandwidth.
*/
kTTNDataRate_EU868_SF7_BW250 = 6,
/**
* @brief Data rate for region EU868 using FSK and 50 kpbs.
*/
kTTNDataRate_EU868_FSK = 7,
/**
* @brief Data rate for region IN866 using SF12 and 125 kHz bandwidth.
*/
kTTNDataRate_IN866_SF12 = 0,
/**
* @brief Data rate for region IN866 using SF11 and 125 kHz bandwidth.
*/
kTTNDataRate_IN866_SF11 = 1,
/**
* @brief Data rate for region IN866 using SF10 and 125 kHz bandwidth.
*/
kTTNDataRate_IN866_SF10 = 2,
/**
* @brief Data rate for region IN866 using SF9 and 125 kHz bandwidth.
*/
kTTNDataRate_IN866_SF9 = 3,
/**
* @brief Data rate for region IN866 using SF8 and 125 kHz bandwidth.
*/
kTTNDataRate_IN866_SF8 = 4,
/**
* @brief Data rate for region IN866 using SF7 and 125 kHz bandwidth.
*/
kTTNDataRate_IN866_SF7 = 5,
/**
* @brief Data rate for region IN866 using FSK and 50 kpbs.
*/
kTTNDataRate_IN866_FSK = 7,
/**
* @brief Data rate for region KR920 using SF12 and 125 kHz bandwidth.
*/
kTTNDataRate_KR920_SF12 = 0,
/**
* @brief Data rate for region KR920 using SF11 and 125 kHz bandwidth.
*/
kTTNDataRate_KR920_SF11 = 1,
/**
* @brief Data rate for region KR920 using SF10 and 125 kHz bandwidth.
*/
kTTNDataRate_KR920_SF10 = 2,
/**
* @brief Data rate for region KR920 using SF9 and 125 kHz bandwidth.
*/
kTTNDataRate_KR920_SF9 = 3,
/**
* @brief Data rate for region KR920 using SF8 and 125 kHz bandwidth.
*/
kTTNDataRate_KR920_SF8 = 4,
/**
* @brief Data rate for region KR920 using SF7 and 125 kHz bandwidth.
*/
kTTNDataRate_KR920_SF7 = 5,
/**
* @brief Data rate for region US915 using SF10 and 125 kHz bandwidth.
*/
kTTNDataRate_US915_SF10 = 0,
/**
* @brief Data rate for region US915 using SF9 and 125 kHz bandwidth.
*/
kTTNDataRate_US915_SF9 = 1,
/**
* @brief Data rate for region US915 using SF8 and 125 kHz bandwidth.
*/
kTTNDataRate_US915_SF8 = 2,
/**
* @brief Data rate for region US915 using SF7 and 125 kHz bandwidth.
*/
kTTNDataRate_US915_SF7 = 3,
/**
* @brief Data rate for region US915 using SF8 and 500 kHz bandwidth.
*/
kTTNDataRate_US915_SF8_BW500 = 4,
/**
* @brief Data rate for region US915 using SF12 and 500 kHz bandwidth.
*
* Reserved for future applications.
*/
kTTNDataRate_US915_SF12_BW500 = 8,
/**
* @brief Data rate for region US915 using SF11 and 500 kHz bandwidth.
*
* Reserved for future applications.
*/
kTTNDataRate_US915_SF11_BW500 = 9,
/**
* @brief Data rate for region US915 using SF10 and 500 kHz bandwidth.
*
* Reserved for future applications.
*/
kTTNDataRate_US915_SF10_BW500 = 10,
/**
* @brief Data rate for region US915 using SF9 and 500 kHz bandwidth.
*
* Reserved for future applications.
*/
kTTNDataRate_US915_SF9_BW500 = 11,
/**
* @brief Data rate for region US915 using SF8 and 500 kHz bandwidth.
*
* Reserved for future applications.
*/
kTTNDataRate_US915_SF8_BW500_DR12 = 12,
/**
* @brief Data rate for region US915 using SF7 and 500 kHz bandwidth.
*
* Reserved for future applications.
*/
kTTNDataRate_US915_SF7_BW500 = 13,
/**
* @brief Default data rate for joining
*/
kTTNDRJoinDdefault
};
/**
* @brief RF settings for TX or RX
*/
struct TTNRFSettings
{
/**
* @brief Spreading Factor (SF)
*/
TTNSpreadingFactor spreadingFactor;
/**
* @brief Bandwidth (BW)
*/
TTNBandwidth bandwidth;
/**
* @brief Frequency, in Hz
*/
uint32_t frequency;
};
/**
* @brief Callback for recieved messages
*
* @param payload pointer to the received bytes
* @param length number of received bytes
* @param port port the message was received on
*/
typedef void (*TTNMessageCallback)(const uint8_t *payload, size_t length, ttn_port_t port);
/**
* @brief TTN device
*
* This class enables ESP32 devices with SX1272/73/76/77/78/79 LoRaWAN chips
* to communicate via The Things Network.
*
* Only one instance of this class may be created.
*/
class TheThingsNetwork
{
public:
/**
* @brief Constructs a new The Things Network device instance.
*/
TheThingsNetwork()
{
ttn_init();
}
/**
* @brief Destroys the The Things Network device instance.
*/
~TheThingsNetwork()
{
}
/**
* @brief Resets the LoRaWAN radio.
*
* To restart communication, @ref join() must be called.
* Clears neither the provisioned keys nor the configured pins.
*/
void reset()
{
ttn_reset();
}
/**
* @brief Configures the pins used to communicate with the LoRaWAN radio chip.
*
* Before calling this member function, the SPI bus needs to be configured using `spi_bus_initialize()`.
* Additionally, `gpio_install_isr_service()` must have been called to initialize the GPIO ISR handler service.
*
* @param spi_host The SPI bus/peripherial to use (`SPI_HOST`, `HSPI_HOST` or `VSPI_HOST`).
* @param nss The GPIO pin number connected to the radio chip's NSS pin (serving as the SPI chip select)
* @param rxtx The GPIO pin number connected to the radio chip's RXTX pin (@ref TTN_NOT_CONNECTED if not
* connected)
* @param rst The GPIO pin number connected to the radio chip's RST pin (@ref TTN_NOT_CONNECTED if not
* connected)
* @param dio0 The GPIO pin number connected to the radio chip's DIO0 pin
* @param dio1 The GPIO pin number connected to the radio chip's DIO1 pin
*/
void configurePins(spi_host_device_t spi_host, uint8_t nss, uint8_t rxtx, uint8_t rst, uint8_t dio0, uint8_t dio1)
{
ttn_configure_pins(spi_host, nss, rxtx, rst, dio0, dio1);
}
/**
* @brief Sets the frequency sub-band to be used.
*
* For regions with sub-bands (USA, Australia), sets the sub-band to be used for uplink communication.
* For other regions, this function has no effect.
*
* The sub-band must be set before joining or sending the first message.
*
* If not set, it defaults to sub-band 2 as defined by TTN.
*
* @param band band (0 for all bands, or value between 1 and 8)
*/
void setSubband(int band)
{
ttn_set_subband(band);
}
/**
* @brief Sets the credentials needed to activate the device via OTAA, without activating it.
*
* The provided DevEUI, AppEUI/JoinEUI and AppKey are saved in non-volatile memory. Before
* this function is called, `nvs_flash_init()` must have been called once.
*
* Call @ref join() to activate the device.
*
* @param devEui DevEUI (16 character string with hexadecimal data)
* @param appEui AppEUI/JoinEUI of the device (16 character string with hexadecimal data)
* @param appKey AppKey of the device (32 character string with hexadecimal data)
* @return `true` if the provisioning was successful, `false` if the provisioning failed
*/
bool provision(const char *devEui, const char *appEui, const char *appKey)
{
return ttn_provision(devEui, appEui, appKey);
}
/**
* @brief Sets the information needed to activate the device via OTAA, using the MAC to generate the DevEUI
* and without activating it.
*
* The generated DevEUI and the provided AppEUI/JoinEUI and AppKey are saved in non-volatile memory. Before
* this function is called, `nvs_flash_init` must have been called once.
*
* The DevEUI is generated by retrieving the ESP32's WiFi MAC address and expanding it into a DevEUI
* by adding FFFE in the middle. So the MAC address A0:B1:C2:01:02:03 becomes the EUI A0B1C2FFFE010203.
* This hexadecimal data can be entered into the DevEUI field in the TTN console.
*
* Generating the DevEUI from the MAC address allows to flash the same AppEUI/JoinEUI and AppKey to a batch of
* devices. However, using the same AppKey for multiple devices is insecure. Only use this approach if
* it is okay for that the LoRa communication of your application can easily be intercepted and that
* forged data can be injected.
*
* Call @ref join() to activate.
*
* @param appEui AppEUI/JoinEUI of the device (16 character string with hexadecimal data)
* @param appKey AppKey of the device (32 character string with hexadecimal data)
* @return `true` if the provisioning was successful, `false` if the provisioning failed
*/
bool provisionWithMAC(const char *appEui, const char *appKey)
{
return ttn_provision_with_mac(appEui, appKey);
}
/**
* @brief Starts task listening on configured UART for AT commands.
*
* Run `make menuconfig` to configure it.
*/
void startProvisioningTask()
{
ttn_start_provisioning_task();
}
/**
* @brief Waits until the DevEUI, AppEUI/JoinEUI and AppKey have been provisioned
* by the provisioning task.
*
* If the device has already been provisioned (stored data in NVS, call of provision()
* or call of @ref join(const char*, const char*, const char*), this function
* immediately returns.
*/
void waitForProvisioning()
{
ttn_wait_for_provisioning();
}
/**
* @brief Activates the device via OTAA.
*
* The DevEUI, AppEUI/JoinEUI and AppKey must have already been provisioned by a call to provision().
* Before this function is called, `nvs_flash_init()` must have been called once.
*
* The function blocks until the activation has completed or failed.
*
* @return `true` if the activation was succesful, `false` if the activation failed
*/
bool join()
{
return ttn_join_provisioned();
}
/**
* @brief Sets the DevEUI, AppEUI/JoinEUI and AppKey and activate the device via OTAA.
*
* The DevEUI, AppEUI/JoinEUI and AppKey are NOT saved in non-volatile memory.
*
* The function blocks until the activation has completed or failed.
*
* @param devEui DevEUI (16 character string with hexadecimal data)
* @param appEui AppEUI/JoinEUI of the device (16 character string with hexadecimal data)
* @param appKey AppKey of the device (32 character string with hexadecimal data)
* @return `true` if the activation was succesful, `false` if the activation failed
*/
bool join(const char *devEui, const char *appEui, const char *appKey)
{
return ttn_join(devEui, appEui, appKey);
}
/**
* @brief Transmits a message
*
* The function blocks until the message could be transmitted and a message has been received
* in the subsequent receive window (or the window expires). Additionally, the function will
* first wait until the duty cycle allows a transmission (enforcing the duty cycle limits).
*
* @param payload bytes to be transmitted
* @param length number of bytes to be transmitted
* @param port port (defaults to 1)
* @param confirm flag indicating if a confirmation should be requested. Defaults to `false`
* @return @ref kTTNSuccessfulTransmission for successful transmission, @ref kTTNErrorTransmissionFailed for failed
* transmission, @ref kTTNErrorUnexpected for unexpected error
*/
TTNResponseCode transmitMessage(const uint8_t *payload, size_t length, ttn_port_t port = 1, bool confirm = false)
{
return static_cast<TTNResponseCode>(ttn_transmit_message(payload, length, port, confirm));
}
/**
* @brief Sets the function to be called when a message is received
*
* When a message is received, the specified function is called. The
* message, its length and the port number are provided as
* parameters. The values are only valid during the duration of the
* callback. So they must be immediately processed or copied.
*
* Messages are received as a result of a call to @ref transmitMessage(). The callback is called
* in the task that called this function and it occurs before this function
* returns control to the caller.
*
* @param callback the callback function
*/
void onMessage(TTNMessageCallback callback)
{
ttn_on_message(callback);
}
/**
* @brief Checks if DevEUI, AppEUI/JoinEUI and AppKey have been stored in non-volatile storage
* or have been provided as by a call to @ref join(const char*, const char*, const char*).
*
* @return `true` if they are stored, complete and of the correct size, `false` otherwise
*/
bool isProvisioned()
{
return ttn_is_provisioned();
}
/**
* @brief Sets the RSSI calibration value for LBT (Listen Before Talk).
*
* This value is added to RSSI measured prior to decision. It must include the guardband.
* Ignored in US, EU, IN and other countries where LBT is not required.
* Defaults to 10 dB.
*
* @param rssiCal RSSI calibration value, in dB
*/
void setRSSICal(int8_t rssiCal)
{
ttn_set_rssi_cal(rssiCal);
}
/**
* Returns whether Adaptive Data Rate (ADR) is enabled.
*
* @return `true` if enabled, `false` if disabled
*/
bool adrEnabled()
{
return ttn_adr_enabled();
}
/**
* @brief Enables or disabled Adaptive Data Rate (ADR).
*
* ADR is enabled by default. It optimizes data rate, airtime and energy consumption
* for devices with stable RF conditions. It should be turned off for mobile devices.
*
* @param enabled `true` to enable, `false` to disable
*/
void setAdrEnabled(bool enabled)
{
ttn_set_adr_enabled(enabled);
}
/**
* @brief Sets the transmission data rate (i.e. the data rate for uplink messages).
*
* If ADR is enabled, it's is used as the initial data rate and later adjusted depending
* on the RF conditions. If ADR is disabled, it is used for all uplink messages.
*
* @param data_rate data rate (use constants of enum @ref TTNDataRate)
*/
void setDataRate(TTNDataRate data_rate)
{
ttn_set_data_rate(static_cast<ttn_data_rate_t>(data_rate));
}
/**
* @brief Sets the maximum power for transmission
*
* The power is specified in dBm and sets the power emitted by the radio.
* If the antenna has a gain, it must be substracted from the specified value to
* achieve the correct transmission power.
*
* @param tx_pow power, in dBm
*/
void setMaxTxPower(int tx_pow)
{
ttn_set_max_tx_pow(tx_pow);
}
/**
* @brief Stops all activies and shuts down the RF module and the background tasks.
*
* To restart communication, @ref startup() and @ref join() must be called.
* it neither clears the provisioned keys nor the configured pins.
*/
void shutdown()
{
ttn_shutdown();
}
/**
* @brief Restarts the background tasks and RF module.
*
* This member function must only be called after a call to shutdowna().
*/
void startup()
{
ttn_startup();
}
/**
* @brief Gets current RX/TX window
* @return window
*/
TTNRxTxWindow rxTxWindow()
{
return static_cast<TTNRxTxWindow>(ttn_rx_tx_window());
}
/**
* @brief Gets the RF settings for the specified window
* @param window RX/TX window (valid values are @ref kTTNTxWindow, @ref kTTNRx1Window and @ref kTTNRx2Window)
*/
TTNRFSettings getRFSettings(TTNRxTxWindow window);
/**
* @brief Gets the RF settings of the last (or ongoing) transmission.
* @return RF settings
*/
TTNRFSettings txSettings()
{
return getRFSettings(kTTNTxWindow);
}
/**
* @brief Gets the RF settings of the last (or ongoing) reception of RX window 1.
* @return RF settings
*/
TTNRFSettings rx1Settings()
{
return getRFSettings(kTTNRx1Window);
}
/**
* @brief Gets the RF settings of the last (or ongoing) reception of RX window 2.
* @return RF settings
*/
TTNRFSettings rx2Settings()
{
return getRFSettings(kTTNRx2Window);
}
/**
* @brief Gets the received signal strength indicator (RSSI).
*
* RSSI is the measured signal strength of the last recevied message (incl. join responses).
*
* @return RSSI, in dBm
*/
int rssi()
{
return ttn_rssi();
}
};
#endif