Merge pull request 'feature/temperature-predict' (#16) from feature/temperature-predict into main

Reviewed-on: #16
This commit is contained in:
Hendrik Schutter 2024-12-26 19:12:20 +01:00
commit 4ffa416f6f
5 changed files with 160 additions and 44 deletions

View File

@ -35,7 +35,7 @@ void initControl(void)
BaseType_t taskCreated = xTaskCreate(
taskControl, // Function to implement the task
"taskControl", // Task name
4096, // Stack size (in words, not bytes)
8192, // Stack size (in words, not bytes)
NULL, // Parameters to the task function (none in this case)
5, // Task priority (higher number = higher priority)
NULL // Task handle (optional)

View File

@ -1,6 +1,8 @@
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include <string.h>
#include <math.h>
#include "esp_log.h"
#include <ds18x20.h>
@ -31,7 +33,10 @@ static sMeasurement sInletFlowTemperature;
static sMeasurement sReturnFlowTemperature;
void taskInput(void *pvParameters);
void initMeasurement(sMeasurement *pMeasurement);
void updateAverage(sMeasurement *pMeasurement);
void updatePrediction(sMeasurement *pMeasurement);
float linearRegressionPredict(const float *samples, size_t count, float futureIndex);
void initInputs(void)
{
@ -53,6 +58,11 @@ void initInputs(void)
}
xSemaphoreGiveRecursive(xMutexAccessInputs);
initMeasurement(&sChamperTemperature);
initMeasurement(&sOutdoorTemperature);
initMeasurement(&sInletFlowTemperature);
initMeasurement(&sReturnFlowTemperature);
BaseType_t taskCreated = xTaskCreate(
taskInput, // Function to implement the task
"taskInput", // Task name
@ -72,8 +82,36 @@ void initInputs(void)
}
}
void initMeasurement(sMeasurement *pMeasurement)
{
if (!pMeasurement)
return;
pMeasurement->state = MEASUREMENT_FAULT;
pMeasurement->fCurrentValue = 0.0f;
pMeasurement->average10s.fValue = 0.0f;
pMeasurement->average10s.bufferCount = 0U;
pMeasurement->average10s.bufferIndex = 0U;
memset(pMeasurement->average10s.samples, 0U, AVG10_SAMPLE_SIZE);
pMeasurement->average60s.fValue = 0.0f;
pMeasurement->average60s.bufferCount = 0U;
pMeasurement->average60s.bufferIndex = 0U;
memset(pMeasurement->average60s.samples, 0U, AVG60_SAMPLE_SIZE);
pMeasurement->predict60s.fValue = 0.0f;
pMeasurement->predict60s.bufferCount = 0U;
pMeasurement->predict60s.bufferIndex = 0U;
memset(pMeasurement->predict60s.samples, 0U, PRED60_SAMPLE_SIZE);
}
void updateAverage(sMeasurement *pMeasurement)
{ /* Average form the last 10sec */
{
if (!pMeasurement)
return;
// Average form the last 10sec
pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average10s.bufferIndex = (pMeasurement->average10s.bufferIndex + 1) % AVG10_SAMPLE_SIZE;
@ -82,20 +120,15 @@ void updateAverage(sMeasurement *pMeasurement)
pMeasurement->average10s.bufferCount++;
}
if (pMeasurement->average10s.bufferCount == 0U)
{
pMeasurement->average10s.fValue = pMeasurement->fCurrentValue;
}
float sum = 0.0;
for (int i = 0; i < pMeasurement->average10s.bufferCount; i++)
for (int i = 0; i <= pMeasurement->average10s.bufferCount; i++)
{
sum += pMeasurement->average10s.samples[i];
}
pMeasurement->average10s.fValue = sum / pMeasurement->average10s.bufferCount;
/* Average form the last 60sec */
// Average form the last 60sec
pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average60s.bufferIndex = (pMeasurement->average60s.bufferIndex + 1) % AVG60_SAMPLE_SIZE;
@ -104,13 +137,8 @@ void updateAverage(sMeasurement *pMeasurement)
pMeasurement->average60s.bufferCount++;
}
if (pMeasurement->average60s.bufferCount == 0U)
{
pMeasurement->average60s.fValue = pMeasurement->fCurrentValue;
}
sum = 0.0;
for (int i = 0; i < pMeasurement->average60s.bufferCount; i++)
for (int i = 0; i <= pMeasurement->average60s.bufferCount; i++)
{
sum += pMeasurement->average60s.samples[i];
}
@ -118,6 +146,25 @@ void updateAverage(sMeasurement *pMeasurement)
pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount;
}
void updatePrediction(sMeasurement *pMeasurement)
{
if (!pMeasurement)
return;
// Update predict60s buffer
sPredict *predict60s = &pMeasurement->predict60s;
predict60s->samples[predict60s->bufferIndex] = pMeasurement->fCurrentValue;
predict60s->bufferIndex = (predict60s->bufferIndex + 1) % PRED60_SAMPLE_SIZE;
if (predict60s->bufferCount < PRED60_SAMPLE_SIZE)
predict60s->bufferCount++;
// Predict 60s future value using linear regression
predict60s->fValue = linearRegressionPredict(
predict60s->samples,
predict60s->bufferCount,
predict60s->bufferCount + 60.0f);
}
void taskInput(void *pvParameters)
{
while (1)
@ -163,7 +210,7 @@ void taskInput(void *pvParameters)
if (ds18x20_measure_and_read_multi(uDS18B20Pin, uOneWireAddresses, sSensorCount, fDS18B20Temps) != ESP_OK)
{
ESP_LOGE(TAG, "1-Wire devices read error");
vTaskDelay(PERIODIC_INTERVAL * 100U / portTICK_PERIOD_MS); //Wait 100ms if bus error occurred
vTaskDelay(PERIODIC_INTERVAL * 100U / portTICK_PERIOD_MS); // Wait 100ms if bus error occurred
}
else
{
@ -178,21 +225,25 @@ void taskInput(void *pvParameters)
sChamperTemperature.fCurrentValue = temp_c;
sChamperTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sChamperTemperature);
updatePrediction(&sChamperTemperature);
break;
case ((uint64_t)uOutdoorTempSensorAddr):
sOutdoorTemperature.fCurrentValue = temp_c;
sOutdoorTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sOutdoorTemperature);
updatePrediction(&sOutdoorTemperature);
break;
case ((uint64_t)uInletFlowTempSensorAddr):
sInletFlowTemperature.fCurrentValue = temp_c;
sInletFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sInletFlowTemperature);
updatePrediction(&sInletFlowTemperature);
break;
case ((uint64_t)uReturnFlowTempSensorAddr):
sReturnFlowTemperature.fCurrentValue = temp_c;
sReturnFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sReturnFlowTemperature);
updatePrediction(&sReturnFlowTemperature);
break;
default:
break;
@ -216,6 +267,36 @@ void taskInput(void *pvParameters)
}
}
float linearRegressionPredict(const float *samples, size_t count, float futureIndex)
{
if (count == 0)
return 0.0f; // No prediction possible with no data
float sumX = 0.0f, sumY = 0.0f, sumXY = 0.0f, sumX2 = 0.0f;
for (size_t i = 0; i < count; i++)
{
float x = (float)i; // Time index
float y = samples[i]; // Sample value
sumX += x;
sumY += y;
sumXY += x * y;
sumX2 += x * x;
}
// Calculate slope (m) and intercept (b) of the line: y = mx + b
float denominator = (count * sumX2 - sumX * sumX);
if (fabs(denominator) < 1e-6) // Avoid division by zero
return samples[count - 1]; // Return last value as prediction
float m = (count * sumXY - sumX * sumY) / denominator;
float b = (sumY - m * sumX) / count;
// Predict value at futureIndex
return m * futureIndex + b;
}
sMeasurement getChamberTemperature(void)
{
sMeasurement ret;

View File

@ -3,6 +3,7 @@
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define AVG10_SAMPLE_SIZE 10U
#define AVG60_SAMPLE_SIZE 60U
#define PRED60_SAMPLE_SIZE 60U
typedef enum _BurnerErrorState
{
@ -24,11 +25,20 @@ typedef struct _Average
size_t bufferCount;
} sAverage;
typedef struct _Predict
{
float fValue;
float samples[PRED60_SAMPLE_SIZE];
size_t bufferIndex;
size_t bufferCount;
} sPredict;
typedef struct _Measurement
{
float fCurrentValue;
sAverage average10s;
sAverage average60s;
sPredict predict60s;
eMeasurementErrorState state;
} sMeasurement;

View File

@ -32,7 +32,7 @@ void initMetrics(void)
BaseType_t taskCreated = xTaskCreate(
taskMetrics, // Function to implement the task
"taskMetrics", // Task name
16384, // Stack size (in words, not bytes)
32768, // Stack size (in words, not bytes)
NULL, // Parameters to the task function (none in this case)
5, // Task priority (higher number = higher priority)
NULL // Task handle (optional)
@ -56,13 +56,13 @@ void taskMetrics(void *pvParameters)
u16MetricCounter = 0U;
/*Burner Error State*/
// Burner Error State
strcpy(aMetrics[u16MetricCounter].caMetricName, "burner_fault_pending");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getBurnerError();
u16MetricCounter++;
/*Circulation Pump State*/
// Circulation Pump State
if (getCirculationPumpState() == ENABLED)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "circulation_pump_enabled");
@ -78,7 +78,7 @@ void taskMetrics(void *pvParameters)
u16MetricCounter++;
}
/*Burner State*/
// Burner State
if (getBurnerState() == ENABLED)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "burner_enabled");
@ -94,7 +94,7 @@ void taskMetrics(void *pvParameters)
u16MetricCounter++;
}
/*Safety Contact State*/
// Safety Contact State
if (getSafetyControlState() == ENABLED)
{
strcpy(aMetrics[u16MetricCounter].caMetricName, "safety_contact_enabled");
@ -110,79 +110,103 @@ void taskMetrics(void *pvParameters)
u16MetricCounter++;
}
/*Chamber Temperature*/
// Chamber Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().fCurrentValue;
u16MetricCounter++;
/*Chamber Temperature Average 10s*/
// Chamber Temperature Average 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average10s.fValue;
u16MetricCounter++;
/*Chamber Temperature Average 60s*/
// Chamber Temperature Average 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average60s.fValue;
u16MetricCounter++;
/*Inlet Flow Temperature*/
// Chamber Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().predict60s.fValue;
u16MetricCounter++;
// Inlet Flow Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().fCurrentValue;
u16MetricCounter++;
/*Inlet Flow Temperature Average 10s*/
// Inlet Flow Temperature Average 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average10s.fValue;
u16MetricCounter++;
/*Inlet Flow Temperature Average 60s*/
// Inlet Flow Temperature Average 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average60s.fValue;
u16MetricCounter++;
/*Outdoor Temperature*/
// Inlet Flow Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().predict60s.fValue;
u16MetricCounter++;
// Outdoor Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().fCurrentValue;
u16MetricCounter++;
/*Outdoor Temperature Average 10s*/
// Outdoor Temperature Average 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average10s.fValue;
u16MetricCounter++;
/*Outdoor Temperature Average 60s*/
// Outdoor Temperature Average 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average60s.fValue;
u16MetricCounter++;
/*Return Flow Temperature*/
// Outdoor Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().predict60s.fValue;
u16MetricCounter++;
// Return Flow Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().fCurrentValue;
u16MetricCounter++;
/*Return Flow Temperature Average 10s*/
// Return Flow Temperature Average 10s
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_avg10");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average10s.fValue;
u16MetricCounter++;
/*Return Flow Temperature Average 60s*/
// Return Flow Temperature Average 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_avg60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average60s.fValue;
u16MetricCounter++;
/*Sensor State*/
// Return Flow Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().predict60s.fValue;
u16MetricCounter++;
// Sensor State
sSensorSanityCheck aChecks[NUMBER_OF_SENSOR_SANITY_CHECKS];
getSensorSanityStates(aChecks);
for (size_t i = 0; i < NUMBER_OF_SENSOR_SANITY_CHECKS; i++)
@ -194,25 +218,25 @@ void taskMetrics(void *pvParameters)
u16MetricCounter++;
}
/*Safety State*/
// Safety State
strcpy(aMetrics[u16MetricCounter].caMetricName, "safety_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getSafetyState();
u16MetricCounter++;
/*Control State*/
// Control State
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getControlState();
u16MetricCounter++;
/*SNTP State*/
// SNTP State
strcpy(aMetrics[u16MetricCounter].caMetricName, "sntp_state");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getSntpState();
u16MetricCounter++;
/*System Time*/
// System Time
time_t now;
time(&now);
strcpy(aMetrics[u16MetricCounter].caMetricName, "system_unixtime");
@ -220,13 +244,13 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].i64MetricValue = now;
u16MetricCounter++;
/*Uptime*/
// Uptime
strcpy(aMetrics[u16MetricCounter].caMetricName, "uptime_seconds");
aMetrics[u16MetricCounter].type = INTEGER_64;
aMetrics[u16MetricCounter].i64MetricValue = (esp_timer_get_time() / 1000000U);
u16MetricCounter++;
/*Wifi RSSI*/
// Wifi RSSI
wifi_ap_record_t ap;
esp_wifi_sta_get_ap_info(&ap);
strcpy(aMetrics[u16MetricCounter].caMetricName, "wifi_rssi");
@ -243,7 +267,7 @@ void vSetMetrics(sMetric *paMetrics, uint16_t u16Size)
if (xSemaphoreTakeRecursive(xMutexAccessMetricResponse, pdMS_TO_TICKS(5000)) == pdTRUE)
{
memset(caHtmlResponse, 0, strlen(caHtmlResponse));
memset(caHtmlResponse, 0U, strlen(caHtmlResponse));
for (uint16_t u16Index = 0U; u16Index < u16Size; u16Index++)
{
char caValueBuffer[64];
@ -263,6 +287,7 @@ void vSetMetrics(sMetric *paMetrics, uint16_t u16Size)
break;
}
// printf("%s\n", paMetrics[u16Index].caMetricName);
// printf("%s\n", caValueBuffer);
strcat(caHtmlResponse, paMetrics[u16Index].caMetricName);
strcat(caHtmlResponse, caValueBuffer);

View File

@ -2,9 +2,9 @@
#include <esp_http_server.h>
#define HTML_RESPONSE_SIZE 1024U
#define METRIC_NAME_MAX_SIZE 256U
#define METRIC_MAX_COUNT 64U
#define HTML_RESPONSE_SIZE 4096U
#define METRIC_NAME_MAX_SIZE 64U
#define METRIC_MAX_COUNT 32U
typedef enum _MetricValueType
{