18 Commits

Author SHA256 Message Date
f3f6f1bc5f Potential division by zero 2026-01-10 12:01:22 +01:00
b718073907 Missing break before default 2026-01-10 11:58:46 +01:00
d36b91a0fd Variable name shadows type name 2026-01-10 11:57:15 +01:00
40f757b7d1 uUnchangedCounter reset logic flaw 2026-01-10 11:54:18 +01:00
a9ec101bc6 Floating-point equality comparison 2026-01-10 11:52:08 +01:00
0236ebcdd1 Unsafe strcpy 2026-01-10 11:47:04 +01:00
05757a5038 Unchecked WiFi API call 2026-01-10 11:45:49 +01:00
020eb63e05 Unchecked network configuration 2026-01-10 11:43:26 +01:00
67929580d5 Unchecked xEventGroupCreate 2026-01-10 11:42:27 +01:00
10f9645580 Unchecked gpio_config returns 2026-01-10 11:39:37 +01:00
df3825df3a Non-thread-safe function 2026-01-10 11:33:37 +01:00
8c3dbc2886 Unprotected shared state access 2026-01-10 11:31:34 +01:00
267197ec20 Missing mutex protection 2026-01-10 11:06:10 +01:00
781f9a1445 ncorrect memset with strlen 2026-01-10 11:02:31 +01:00
09a3c3a22d Misuse of ESP_ERROR_CHECK 2026-01-10 10:58:12 +01:00
0775fda0ca Off-by-one error (buffer overread) 2026-01-10 10:55:15 +01:00
cd73985740 Wrong memset size 2026-01-10 10:54:32 +01:00
af307fd403 handle reconnect 2026-01-09 23:35:44 +01:00
8 changed files with 255 additions and 154 deletions

View File

@ -18,19 +18,5 @@ menu "Smart Oil Heating Control System"
config SNTP_SERVER_IP_ADDR config SNTP_SERVER_IP_ADDR
string "SNTP IPv4 server address" string "SNTP IPv4 server address"
default "192.168.0.1" default "192.168.0.1"
config ENV_WIFI_BSSID_LOCK
bool "Lock to specific Access Point (BSSID)"
default n
help
When enabled, the device will only connect to the access point
with the specified MAC address (BSSID). Useful when multiple APs
share the same SSID.
config ENV_WIFI_BSSID
string "Access Point MAC Address (BSSID)"
default "00:00:00:00:00:00"
depends on ENV_WIFI_BSSID_LOCK
help
MAC address of the access point to connect to.
Format: XX:XX:XX:XX:XX:XX (uppercase or lowercase)
endmenu endmenu

View File

@ -25,9 +25,9 @@
(60U * 4U) // Burner fault detection after 4 minutes (60U * 4U) // Burner fault detection after 4 minutes
static const char *TAG = "smart-oil-heater-control-system-control"; static const char *TAG = "smart-oil-heater-control-system-control";
static eControlState sControlState = CONTROL_STARTING; static eControlState gControlState = CONTROL_STARTING;
// Control table for daily schedules // Control table for daily schedules
static const sControlDay aControlTable[] = { static const sControlDay gControlTable[] = {
{MONDAY, {MONDAY,
2U, 2U,
{{{4, 45}, {{{4, 45},
@ -85,15 +85,25 @@ static const sControlDay aControlTable[] = {
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}}, CHAMBER_TEMPERATURE_TARGET}}},
}; };
static sControlTemperatureEntry currentControlEntry = static sControlTemperatureEntry gCurrentControlEntry =
aControlTable[0].aTemperatureEntries[0]; gControlTable[0].aTemperatureEntries[0];
static SemaphoreHandle_t xMutexAccessControl = NULL;
// Function prototypes // Function prototypes
void taskControl(void *pvParameters); void taskControl(void *pvParameters);
void findControlCurrentTemperatureEntry(void); void findControlCurrentTemperatureEntry(void);
void setControlState(eControlState state);
void initControl(void) void initControl(void)
{ {
xMutexAccessControl = xSemaphoreCreateRecursiveMutex();
if (xMutexAccessControl == NULL)
{
ESP_LOGE(TAG, "Unable to create mutex");
}
xSemaphoreGiveRecursive(xMutexAccessControl);
BaseType_t taskCreated = BaseType_t taskCreated =
xTaskCreate(taskControl, // Function to implement the task xTaskCreate(taskControl, // Function to implement the task
"taskControl", // Task name "taskControl", // Task name
@ -117,7 +127,7 @@ void taskControl(void *pvParameters)
{ {
bool bHeatingInAction = false; bool bHeatingInAction = false;
bool bSummerMode = false; bool bSummerMode = false;
eBurnerState eBurnerState = BURNER_UNKNOWN; eBurnerState burnerState = BURNER_UNKNOWN;
int64_t i64BurnerEnableTimestamp = esp_timer_get_time(); int64_t i64BurnerEnableTimestamp = esp_timer_get_time();
while (1) while (1)
@ -128,7 +138,7 @@ void taskControl(void *pvParameters)
if (getSafetyState() != SAFETY_NO_ERROR) if (getSafetyState() != SAFETY_NO_ERROR)
{ {
ESP_LOGW(TAG, "Control not possible due to safety fault!"); ESP_LOGW(TAG, "Control not possible due to safety fault!");
sControlState = CONTROL_FAULT_SAFETY; setControlState(CONTROL_FAULT_SAFETY);
if (bHeatingInAction) if (bHeatingInAction)
{ {
ESP_LOGW(TAG, "Disabling burner due to safety fault"); ESP_LOGW(TAG, "Disabling burner due to safety fault");
@ -143,7 +153,7 @@ void taskControl(void *pvParameters)
if (getSntpState() != SYNC_SUCCESSFUL) if (getSntpState() != SYNC_SUCCESSFUL)
{ {
ESP_LOGW(TAG, "Control not possible due to SNTP fault!"); ESP_LOGW(TAG, "Control not possible due to SNTP fault!");
sControlState = CONTROL_FAULT_SNTP; setControlState(CONTROL_FAULT_SNTP);
if (bHeatingInAction) if (bHeatingInAction)
{ {
ESP_LOGW(TAG, "Disabling burner due to SNTP fault"); ESP_LOGW(TAG, "Disabling burner due to SNTP fault");
@ -155,8 +165,6 @@ void taskControl(void *pvParameters)
} }
findControlCurrentTemperatureEntry(); findControlCurrentTemperatureEntry();
sControlTemperatureEntry currentControlEntry =
getControlCurrentTemperatureEntry();
if (getOutdoorTemperature().fDampedValue >= if (getOutdoorTemperature().fDampedValue >=
SUMMER_MODE_TEMPERATURE_THRESHOLD_HIGH) SUMMER_MODE_TEMPERATURE_THRESHOLD_HIGH)
@ -171,33 +179,33 @@ void taskControl(void *pvParameters)
// Enable burner if outdoor temperature is low and return flow temperature // Enable burner if outdoor temperature is low and return flow temperature
// is cooled down // is cooled down
if (!bHeatingInAction && (eBurnerState != BURNER_FAULT)) if (!bHeatingInAction && (burnerState != BURNER_FAULT))
{ {
if (bSummerMode) if (bSummerMode)
{ {
// ESP_LOGI(TAG, "Outdoor temperature too warm: Disabling heating"); // ESP_LOGI(TAG, "Outdoor temperature too warm: Disabling heating");
setBurnerState(DISABLED); setBurnerState(DISABLED);
setSafetyControlState(DISABLED); setSafetyControlState(DISABLED);
sControlState = CONTROL_OUTDOOR_TOO_WARM; setControlState(CONTROL_OUTDOOR_TOO_WARM);
} }
else if ((getReturnFlowTemperature().average60s.fValue <= else if ((getReturnFlowTemperature().average60s.fValue <=
currentControlEntry.fReturnFlowTemperature) && getControlCurrentTemperatureEntry().fReturnFlowTemperature) &&
(getChamberTemperature().fCurrentValue <= (getChamberTemperature().fCurrentValue <=
CHAMBER_TEMPERATURE_THRESHOLD)) CHAMBER_TEMPERATURE_THRESHOLD))
{ {
ESP_LOGI(TAG, ESP_LOGI(TAG,
"Enabling burner: Return flow temperature target reached"); "Enabling burner: Return flow temperature target reached");
eBurnerState = BURNER_UNKNOWN; burnerState = BURNER_UNKNOWN;
bHeatingInAction = true; bHeatingInAction = true;
setBurnerState(ENABLED); setBurnerState(ENABLED);
setSafetyControlState(ENABLED); setSafetyControlState(ENABLED);
i64BurnerEnableTimestamp = esp_timer_get_time(); i64BurnerEnableTimestamp = esp_timer_get_time();
sControlState = CONTROL_HEATING; setControlState(CONTROL_HEATING);
} }
else else
{ {
// ESP_LOGI(TAG, "Return flow temperature too warm: Disabling heating"); // ESP_LOGI(TAG, "Return flow temperature too warm: Disabling heating");
sControlState = CONTROL_RETURN_FLOW_TOO_WARM; setControlState(CONTROL_RETURN_FLOW_TOO_WARM);
} }
} }
@ -205,9 +213,9 @@ void taskControl(void *pvParameters)
if (bHeatingInAction) if (bHeatingInAction)
{ {
if ((getChamberTemperature().fCurrentValue >= if ((getChamberTemperature().fCurrentValue >=
currentControlEntry.fChamberTemperature) || getControlCurrentTemperatureEntry().fChamberTemperature) ||
(getChamberTemperature().predict60s.fValue >= (getChamberTemperature().predict60s.fValue >=
currentControlEntry.fChamberTemperature)) getControlCurrentTemperatureEntry().fChamberTemperature))
{ {
ESP_LOGI(TAG, "Chamber target temperature reached: Disabling burner"); ESP_LOGI(TAG, "Chamber target temperature reached: Disabling burner");
bHeatingInAction = false; bHeatingInAction = false;
@ -217,14 +225,14 @@ void taskControl(void *pvParameters)
else if (esp_timer_get_time() - i64BurnerEnableTimestamp >= else if (esp_timer_get_time() - i64BurnerEnableTimestamp >=
BURNER_FAULT_DETECTION_THRESHOLD * 1000000U) BURNER_FAULT_DETECTION_THRESHOLD * 1000000U)
{ {
if (eBurnerState == BURNER_UNKNOWN) if (burnerState == BURNER_UNKNOWN)
{ {
if (getBurnerError() == FAULT) if (getBurnerError() == FAULT)
{ {
// ESP_LOGW(TAG, "Burner fault detected: Disabling burner"); // ESP_LOGW(TAG, "Burner fault detected: Disabling burner");
bHeatingInAction = false; bHeatingInAction = false;
eBurnerState = BURNER_FAULT; burnerState = BURNER_FAULT;
sControlState = CONTROL_FAULT_BURNER; setControlState(CONTROL_FAULT_BURNER);
setBurnerState(DISABLED); setBurnerState(DISABLED);
setSafetyControlState(ENABLED); setSafetyControlState(ENABLED);
} }
@ -232,7 +240,7 @@ void taskControl(void *pvParameters)
{ {
// ESP_LOGI(TAG, "No burner fault detected: Marking burner as // ESP_LOGI(TAG, "No burner fault detected: Marking burner as
// fired"); // fired");
eBurnerState = BURNER_FIRED; burnerState = BURNER_FIRED;
} }
} }
} }
@ -253,17 +261,47 @@ void taskControl(void *pvParameters)
} // End of while(1) } // End of while(1)
} }
eControlState getControlState(void) { return sControlState; } void setControlState(eControlState state)
{
if (xSemaphoreTakeRecursive(xMutexAccessControl, pdMS_TO_TICKS(5000)) == pdTRUE)
{
gControlState = state;
xSemaphoreGiveRecursive(xMutexAccessControl);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: setControlState()");
}
}
eControlState getControlState(void)
{
eControlState ret = CONTROL_FAULT_SAFETY;
if (xSemaphoreTakeRecursive(xMutexAccessControl, pdMS_TO_TICKS(5000)) == pdTRUE)
{
ret = gControlState;
xSemaphoreGiveRecursive(xMutexAccessControl);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: getControlState()");
}
return ret;
}
eControlWeekday getControlCurrentWeekday(void) eControlWeekday getControlCurrentWeekday(void)
{ {
// Get current time
time_t now; time_t now;
struct tm *timeinfo; struct tm timeinfo;
time(&now); time(&now);
timeinfo = localtime(&now); localtime_r(&now, &timeinfo);
int day = timeinfo->tm_wday; int day = timeinfo.tm_wday;
return (eControlWeekday)((day == 0) ? 6 : day - 1); return (eControlWeekday)((day == 0) ? 6 : day - 1);
} }
@ -294,12 +332,15 @@ void findControlCurrentTemperatureEntry(void)
int currentHour = timeinfo.tm_hour; int currentHour = timeinfo.tm_hour;
int currentMinute = timeinfo.tm_min; int currentMinute = timeinfo.tm_min;
if (xSemaphoreTakeRecursive(xMutexAccessControl, pdMS_TO_TICKS(5000)) == pdTRUE)
{
// ESP_LOGI(TAG, "Searching for control entry - Day: %d, Time: %02d:%02d", currentDay, currentHour, currentMinute); // ESP_LOGI(TAG, "Searching for control entry - Day: %d, Time: %02d:%02d", currentDay, currentHour, currentMinute);
// Search through all days and entries // Search through all days and entries
for (int dayIndex = 0; dayIndex < 7; dayIndex++) for (int dayIndex = 0; dayIndex < 7; dayIndex++)
{ {
const sControlDay *day = &aControlTable[dayIndex]; const sControlDay *day = &gControlTable[dayIndex];
for (int entryIndex = 0; entryIndex < day->entryCount; entryIndex++) for (int entryIndex = 0; entryIndex < day->entryCount; entryIndex++)
{ {
@ -314,31 +355,32 @@ void findControlCurrentTemperatureEntry(void)
if (isFutureDay || isTodayFutureTime) if (isFutureDay || isTodayFutureTime)
{ {
// Found next scheduled entry, so determine the previous (active) one // Found next scheduled entry, so determine the previous (active) one
if (entryIndex > 0) if (entryIndex > 0)
{ {
// Use previous entry from same day // Use previous entry from same day
currentControlEntry = day->aTemperatureEntries[entryIndex - 1]; gCurrentControlEntry = day->aTemperatureEntries[entryIndex - 1];
} }
else if (dayIndex > 0) else if (dayIndex > 0)
{ {
// Use last entry from previous day // Use last entry from previous day
const sControlDay *previousDay = &aControlTable[dayIndex - 1]; const sControlDay *previousDay = &gControlTable[dayIndex - 1];
currentControlEntry = previousDay->aTemperatureEntries[previousDay->entryCount - 1]; gCurrentControlEntry = previousDay->aTemperatureEntries[previousDay->entryCount - 1];
} }
else else
{ {
// First entry of the week - wrap to last entry of Sunday // First entry of the week - wrap to last entry of Sunday
const sControlDay *sunday = &aControlTable[6]; const sControlDay *sunday = &gControlTable[6];
currentControlEntry = sunday->aTemperatureEntries[sunday->entryCount - 1]; gCurrentControlEntry = sunday->aTemperatureEntries[sunday->entryCount - 1];
} }
/* /*
ESP_LOGI(TAG, "Active entry found - Time: %02d:%02d, " ESP_LOGI(TAG, "Active entry found - Time: %02d:%02d, "
"Return Temp: %lf, Chamber Temp: %lf", "Return Temp: %lf, Chamber Temp: %lf",
currentControlEntry.timestamp.hour, gCurrentControlEntry.timestamp.hour,
currentControlEntry.timestamp.minute, gCurrentControlEntry.timestamp.minute,
currentControlEntry.fReturnFlowTemperature, gCurrentControlEntry.fReturnFlowTemperature,
currentControlEntry.fChamberTemperature); gCurrentControlEntry.fChamberTemperature);
*/ */
return; return;
} }
@ -347,13 +389,30 @@ void findControlCurrentTemperatureEntry(void)
// If we reached here, current time is after all entries this week // If we reached here, current time is after all entries this week
// Use the last entry (Sunday evening) // Use the last entry (Sunday evening)
const sControlDay *sunday = &aControlTable[6]; const sControlDay *sunday = &gControlTable[6];
currentControlEntry = sunday->aTemperatureEntries[sunday->entryCount - 1]; gCurrentControlEntry = sunday->aTemperatureEntries[sunday->entryCount - 1];
// ESP_LOGI(TAG, "Using last entry of week - Time: %02d:%02d", currentControlEntry.timestamp.hour, currentControlEntry.timestamp.minute); // ESP_LOGI(TAG, "Using last entry of week - Time: %02d:%02d", gCurrentControlEntry.timestamp.hour, gCurrentControlEntry.timestamp.minute);
xSemaphoreGiveRecursive(xMutexAccessControl);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: findControlCurrentTemperatureEntry()");
}
} }
sControlTemperatureEntry getControlCurrentTemperatureEntry(void) sControlTemperatureEntry getControlCurrentTemperatureEntry(void)
{ {
return currentControlEntry; sControlTemperatureEntry ret = gControlTable[0].aTemperatureEntries[0];
if (xSemaphoreTakeRecursive(xMutexAccessControl, pdMS_TO_TICKS(5000)) == pdTRUE)
{
ret = gCurrentControlEntry;
xSemaphoreGiveRecursive(xMutexAccessControl);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: getControlCurrentTemperatureEntry()");
}
return ret;
} }

View File

@ -49,7 +49,12 @@ void initInputs(void)
.intr_type = GPIO_INTR_DISABLE // Disable interrupts .intr_type = GPIO_INTR_DISABLE // Disable interrupts
}; };
gpio_config(&ioConfBurnerFault); esp_err_t ret = gpio_config(&ioConfBurnerFault);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "GPIO config failed: %s", esp_err_to_name(ret));
return;
}
xMutexAccessInputs = xSemaphoreCreateRecursiveMutex(); xMutexAccessInputs = xSemaphoreCreateRecursiveMutex();
if (xMutexAccessInputs == NULL) if (xMutexAccessInputs == NULL)
@ -94,17 +99,17 @@ void initMeasurement(sMeasurement *pMeasurement)
pMeasurement->average10s.fValue = INITIALISATION_VALUE; pMeasurement->average10s.fValue = INITIALISATION_VALUE;
pMeasurement->average10s.bufferCount = 0U; pMeasurement->average10s.bufferCount = 0U;
pMeasurement->average10s.bufferIndex = 0U; pMeasurement->average10s.bufferIndex = 0U;
memset(pMeasurement->average10s.samples, 0U, AVG10S_SAMPLE_SIZE); memset(pMeasurement->average10s.samples, 0U, sizeof(float) * AVG10S_SAMPLE_SIZE);
pMeasurement->average60s.fValue = INITIALISATION_VALUE; pMeasurement->average60s.fValue = INITIALISATION_VALUE;
pMeasurement->average60s.bufferCount = 0U; pMeasurement->average60s.bufferCount = 0U;
pMeasurement->average60s.bufferIndex = 0U; pMeasurement->average60s.bufferIndex = 0U;
memset(pMeasurement->average60s.samples, 0U, AVG60S_SAMPLE_SIZE); memset(pMeasurement->average60s.samples, 0U, sizeof(float) * AVG60S_SAMPLE_SIZE);
pMeasurement->predict60s.fValue = INITIALISATION_VALUE; pMeasurement->predict60s.fValue = INITIALISATION_VALUE;
pMeasurement->predict60s.bufferCount = 0U; pMeasurement->predict60s.bufferCount = 0U;
pMeasurement->predict60s.bufferIndex = 0U; pMeasurement->predict60s.bufferIndex = 0U;
memset(pMeasurement->predict60s.samples, 0U, PRED60S_SAMPLE_SIZE); memset(pMeasurement->predict60s.samples, 0U, sizeof(float) * PRED60S_SAMPLE_SIZE);
} }
void updateAverage(sMeasurement *pMeasurement) void updateAverage(sMeasurement *pMeasurement)
@ -122,12 +127,19 @@ void updateAverage(sMeasurement *pMeasurement)
} }
float sum = 0.0; float sum = 0.0;
for (int i = 0; i <= pMeasurement->average10s.bufferCount; i++) for (int i = 0; i < pMeasurement->average10s.bufferCount; i++)
{ {
sum += pMeasurement->average10s.samples[i]; sum += pMeasurement->average10s.samples[i];
} }
if (pMeasurement->average10s.bufferCount == 0U)
{
pMeasurement->average10s.fValue = 0.0f;
}
else
{
pMeasurement->average10s.fValue = sum / pMeasurement->average10s.bufferCount; pMeasurement->average10s.fValue = sum / pMeasurement->average10s.bufferCount;
}
// Average form the last 60sec // Average form the last 60sec
pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue; pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue;
@ -144,7 +156,14 @@ void updateAverage(sMeasurement *pMeasurement)
sum += pMeasurement->average60s.samples[i]; sum += pMeasurement->average60s.samples[i];
} }
if (pMeasurement->average60s.bufferCount == 0U)
{
pMeasurement->average60s.fValue = 0.0f;
}
else
{
pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount; pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount;
}
// Damped current value // Damped current value
if (pMeasurement->fDampedValue == INITIALISATION_VALUE) if (pMeasurement->fDampedValue == INITIALISATION_VALUE)

View File

@ -301,23 +301,23 @@ void taskMetrics(void *pvParameters)
// Wifi RSSI // Wifi RSSI
wifi_ap_record_t ap; wifi_ap_record_t ap;
esp_wifi_sta_get_ap_info(&ap); ap.rssi = 0U;
ESP_ERROR_CHECK(esp_wifi_sta_get_ap_info(&ap));
strcpy(aMetrics[u16MetricCounter].caMetricName, "wifi_rssi"); strcpy(aMetrics[u16MetricCounter].caMetricName, "wifi_rssi");
aMetrics[u16MetricCounter].type = INTEGER_64; aMetrics[u16MetricCounter].type = INTEGER_64;
aMetrics[u16MetricCounter].i64MetricValue = ap.rssi; aMetrics[u16MetricCounter].i64MetricValue = ap.rssi;
u16MetricCounter++; u16MetricCounter++;
ESP_ERROR_CHECK(u16MetricCounter > METRIC_MAX_COUNT); configASSERT(!(u16MetricCounter > METRIC_MAX_COUNT));
vSetMetrics(aMetrics, u16MetricCounter); vSetMetrics(aMetrics, u16MetricCounter);
} }
} }
void vSetMetrics(sMetric *paMetrics, uint16_t u16Size) void vSetMetrics(sMetric *paMetrics, uint16_t u16Size)
{ {
if (xSemaphoreTakeRecursive(xMutexAccessMetricResponse, pdMS_TO_TICKS(5000)) == pdTRUE) if (xSemaphoreTakeRecursive(xMutexAccessMetricResponse, pdMS_TO_TICKS(5000)) == pdTRUE)
{ {
memset(caHtmlResponse, 0U, strlen(caHtmlResponse)); memset(caHtmlResponse, 0U, HTML_RESPONSE_SIZE);
for (uint16_t u16Index = 0U; u16Index < u16Size; u16Index++) for (uint16_t u16Index = 0U; u16Index < u16Size; u16Index++)
{ {
char caValueBuffer[64]; char caValueBuffer[64];

View File

@ -41,9 +41,26 @@ void initOutputs(void)
.intr_type = GPIO_INTR_DISABLE // Disable interrupts .intr_type = GPIO_INTR_DISABLE // Disable interrupts
}; };
gpio_config(&ioConfCirculationPump); esp_err_t ret = gpio_config(&ioConfCirculationPump);
gpio_config(&ioConfBurner); if (ret != ESP_OK)
gpio_config(&ioConfSafetyContact); {
ESP_LOGE(TAG, "GPIO config failed: %s", esp_err_to_name(ret));
return;
}
ret = gpio_config(&ioConfBurner);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "GPIO config failed: %s", esp_err_to_name(ret));
return;
}
ret = gpio_config(&ioConfSafetyContact);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "GPIO config failed: %s", esp_err_to_name(ret));
return;
}
xMutexAccessOutputs = xSemaphoreCreateRecursiveMutex(); xMutexAccessOutputs = xSemaphoreCreateRecursiveMutex();
if (xMutexAccessOutputs == NULL) if (xMutexAccessOutputs == NULL)
@ -55,7 +72,17 @@ void initOutputs(void)
eOutput getCirculationPumpState(void) eOutput getCirculationPumpState(void)
{ {
return sCirculationPumpState; eOutput ret = ENABLED;
if (xSemaphoreTakeRecursive(xMutexAccessOutputs, pdMS_TO_TICKS(5000)) == pdTRUE)
{
ret = sCirculationPumpState;
xSemaphoreGiveRecursive(xMutexAccessOutputs);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: getCirculationPumpState()");
}
return ret;
} }
void setCirculationPumpState(eOutput in) void setCirculationPumpState(eOutput in)
@ -70,6 +97,7 @@ void setCirculationPumpState(eOutput in)
break; break;
case DISABLED: case DISABLED:
gpio_set_level(uCirculationPumpGpioPin, 1U); // Switch off Circulation Pump gpio_set_level(uCirculationPumpGpioPin, 1U); // Switch off Circulation Pump
break;
default: default:
break; break;
} }
@ -108,6 +136,7 @@ void setBurnerState(eOutput in)
break; break;
case DISABLED: case DISABLED:
gpio_set_level(uBurnerGpioPin, 1U); // Switch off Burner gpio_set_level(uBurnerGpioPin, 1U); // Switch off Burner
break;
default: default:
break; break;
} }
@ -146,6 +175,7 @@ void setSafetyControlState(eOutput in)
break; break;
case DISABLED: case DISABLED:
gpio_set_level(uSafetyContactGpioPin, 1U); // Switch off power for Burner gpio_set_level(uSafetyContactGpioPin, 1U); // Switch off power for Burner
break;
default: default:
break; break;
} }

View File

@ -2,10 +2,12 @@
#include "freertos/task.h" #include "freertos/task.h"
#include "esp_log.h" #include "esp_log.h"
#include <string.h> #include <string.h>
#include <math.h>
#include "safety.h" #include "safety.h"
#define PERIODIC_INTERVAL 1U // run safety checks every 1sec #define PERIODIC_INTERVAL 1U // run safety checks every 1sec
#define SENSOR_GRACE_PERIOD (60U * 30U) // period that a sensor can report the same reading in seconds #define SENSOR_GRACE_PERIOD (60U * 30U) // period that a sensor can report the same reading in seconds
#define FLOAT_EPSILON 0.0001f
static const char *TAG = "smart-oil-heater-control-system-safety"; static const char *TAG = "smart-oil-heater-control-system-safety";
static SemaphoreHandle_t xMutexAccessSafety = NULL; static SemaphoreHandle_t xMutexAccessSafety = NULL;
@ -91,7 +93,7 @@ void checkSensorSanity(void)
} }
else else
{ {
if (sCurrentMeasurement.fCurrentValue == sanityChecks[i].fSensorTemperatureLast) if (fabsf(sCurrentMeasurement.fCurrentValue - sanityChecks[i].fSensorTemperatureLast) < FLOAT_EPSILON)
{ {
sanityChecks[i].uUnchangedCounter++; sanityChecks[i].uUnchangedCounter++;
if (sanityChecks[i].uUnchangedCounter >= (SENSOR_GRACE_PERIOD / PERIODIC_INTERVAL)) if (sanityChecks[i].uUnchangedCounter >= (SENSOR_GRACE_PERIOD / PERIODIC_INTERVAL))
@ -103,6 +105,7 @@ void checkSensorSanity(void)
} }
else else
{ {
sanityChecks[i].uUnchangedCounter = 0U;
sanityChecks[i].fSensorTemperatureLast = sCurrentMeasurement.fCurrentValue; sanityChecks[i].fSensorTemperatureLast = sCurrentMeasurement.fCurrentValue;
if (sCurrentMeasurement.fCurrentValue > sanityChecks[i].sSensorLimit.max) if (sCurrentMeasurement.fCurrentValue > sanityChecks[i].sSensorLimit.max)
@ -119,12 +122,10 @@ void checkSensorSanity(void)
} }
else else
{ {
sanityChecks[i].uUnchangedCounter = 0U;
sanityChecks[i].state = SENSOR_NO_ERROR; sanityChecks[i].state = SENSOR_NO_ERROR;
} }
} }
} }
// printf(" state: %u\n", sanityChecks[i].state);
} }
} }
@ -143,7 +144,7 @@ void getSensorSanityStates(sSensorSanityCheck *pSensorSanityChecks)
{ {
// Copy only the needed attributes // Copy only the needed attributes
pSensorSanityChecks[i].state = sanityChecks[i].state; pSensorSanityChecks[i].state = sanityChecks[i].state;
strcpy(pSensorSanityChecks[i].name, sanityChecks[i].name); strncpy(pSensorSanityChecks[i].name, sanityChecks[i].name, MAX_ERROR_STRING_SIZE);
} }
xSemaphoreGiveRecursive(xMutexAccessSafety); xSemaphoreGiveRecursive(xMutexAccessSafety);
} }

View File

@ -6,7 +6,7 @@
#include "sntp.h" #include "sntp.h"
static const char *TAG = "smart-oil-heater-control-system-sntp"; static const char *TAG = "smart-oil-heater-control-system-sntp";
static eSntpState sntpState = SYNC_NOT_STARTED; static volatile eSntpState sntpState = SYNC_NOT_STARTED;
void time_sync_notification_cb(struct timeval *tv); void time_sync_notification_cb(struct timeval *tv);
void initSntp(void) void initSntp(void)

View File

@ -13,27 +13,37 @@
#define WIFI_CONNECTED_BIT BIT0 #define WIFI_CONNECTED_BIT BIT0
#define WIFI_FAIL_BIT BIT1 #define WIFI_FAIL_BIT BIT1
#define MAX_RETRY_COUNT 10
#define RETRY_DELAY_MS 1000
static const char *TAG = "smart-oil-heater-control-system-wifi"; static const char *TAG = "smart-oil-heater-control-system-wifi";
static EventGroupHandle_t s_wifi_event_group; static EventGroupHandle_t s_wifi_event_group;
static int s_retry_num = 0;
static bool s_initial_connect = true;
static void event_handler(void *arg, esp_event_base_t event_base, static void event_handler(void *arg, esp_event_base_t event_base,
int32_t event_id, void *event_data); int32_t event_id, void *event_data);
static bool parse_bssid(const char *bssid_str, uint8_t *bssid);
void initWifi(void) void initWifi(void)
{ {
s_wifi_event_group = xEventGroupCreate(); s_wifi_event_group = xEventGroupCreate();
if (s_wifi_event_group == NULL)
{
ESP_LOGE(TAG, "xEventGroupCreate() failed!");
return;
}
ESP_ERROR_CHECK(esp_netif_init()); ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default()); ESP_ERROR_CHECK(esp_event_loop_create_default());
esp_netif_t *my_sta = esp_netif_create_default_wifi_sta(); esp_netif_t *my_sta = esp_netif_create_default_wifi_sta();
esp_netif_dhcpc_stop(my_sta); ESP_ERROR_CHECK(esp_netif_dhcpc_stop(my_sta));
esp_netif_ip_info_t ip_info; esp_netif_ip_info_t ip_info;
ip_info.ip.addr = ipaddr_addr(CONFIG_STATIC_IP_ADDR); ip_info.ip.addr = ipaddr_addr(CONFIG_STATIC_IP_ADDR);
ip_info.gw.addr = ipaddr_addr(CONFIG_STATIC_GATEWAY_IP_ADDR); ip_info.gw.addr = ipaddr_addr(CONFIG_STATIC_GATEWAY_IP_ADDR);
ip_info.netmask.addr = ipaddr_addr(CONFIG_STATIC_IP_NETMASK); ip_info.netmask.addr = ipaddr_addr(CONFIG_STATIC_IP_NETMASK);
esp_netif_set_ip_info(my_sta, &ip_info); ESP_ERROR_CHECK(esp_netif_set_ip_info(my_sta, &ip_info));
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT(); wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg)); ESP_ERROR_CHECK(esp_wifi_init(&cfg));
@ -57,21 +67,6 @@ void initWifi(void)
.threshold.authmode = WIFI_AUTH_WPA2_PSK, .threshold.authmode = WIFI_AUTH_WPA2_PSK,
}, },
}; };
#if CONFIG_ENV_WIFI_BSSID_LOCK
/* Lock to specific AP by BSSID */
if (parse_bssid(CONFIG_ENV_WIFI_BSSID, wifi_config.sta.bssid))
{
wifi_config.sta.bssid_set = true;
ESP_LOGI(TAG, "BSSID lock enabled: %s", CONFIG_ENV_WIFI_BSSID);
}
else
{
ESP_LOGE(TAG, "Invalid BSSID format: %s", CONFIG_ENV_WIFI_BSSID);
wifi_config.sta.bssid_set = false;
}
#endif
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA)); ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config)); ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config));
@ -100,7 +95,9 @@ void initWifi(void)
{ {
ESP_LOGE(TAG, "Unexpected event"); ESP_LOGE(TAG, "Unexpected event");
} }
vEventGroupDelete(s_wifi_event_group);
// Mark initial connection phase complete - do NOT delete the event group
s_initial_connect = false;
} }
static void event_handler(void *arg, esp_event_base_t event_base, static void event_handler(void *arg, esp_event_base_t event_base,
@ -112,37 +109,46 @@ static void event_handler(void *arg, esp_event_base_t event_base,
} }
else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED)
{ {
wifi_event_sta_disconnected_t *event = (wifi_event_sta_disconnected_t *)event_data;
ESP_LOGW(TAG, "Disconnected from AP (reason: %d)", event->reason);
if (s_initial_connect)
{
// During initial connection phase, use retry limit
if (s_retry_num < MAX_RETRY_COUNT)
{
vTaskDelay(pdMS_TO_TICKS(RETRY_DELAY_MS));
esp_wifi_connect(); esp_wifi_connect();
ESP_LOGI(TAG, "Retry to connect to the AP"); s_retry_num++;
ESP_LOGI(TAG, "Retry to connect to the AP (%d/%d)", s_retry_num, MAX_RETRY_COUNT);
}
else
{
xEventGroupSetBits(s_wifi_event_group, WIFI_FAIL_BIT);
ESP_LOGE(TAG, "Failed to connect after %d attempts", MAX_RETRY_COUNT);
}
}
else
{
// After initial connection, always try to reconnect with delay
vTaskDelay(pdMS_TO_TICKS(RETRY_DELAY_MS));
esp_wifi_connect();
ESP_LOGI(TAG, "Attempting to reconnect to the AP...");
}
} }
else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP)
{ {
ip_event_got_ip_t *event = (ip_event_got_ip_t *)event_data; ip_event_got_ip_t *event = (ip_event_got_ip_t *)event_data;
ESP_LOGI(TAG, "Got ip:" IPSTR, IP2STR(&event->ip_info.ip)); ESP_LOGI(TAG, "Got ip:" IPSTR, IP2STR(&event->ip_info.ip));
s_retry_num = 0;
if (s_initial_connect)
{
xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT); xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);
} }
} else
/**
* @brief Parse BSSID string to byte array
*
* @param bssid_str BSSID string in format "XX:XX:XX:XX:XX:XX"
* @param bssid Output byte array (6 bytes)
* @return true on success, false on parse error
*/
static bool parse_bssid(const char *bssid_str, uint8_t *bssid)
{
unsigned int tmp[6];
int parsed = sscanf(bssid_str, "%x:%x:%x:%x:%x:%x",
&tmp[0], &tmp[1], &tmp[2],
&tmp[3], &tmp[4], &tmp[5]);
if (parsed != 6)
{ {
return false; ESP_LOGI(TAG, "Successfully reconnected to AP");
} }
for (int i = 0; i < 6; i++)
{
bssid[i] = (uint8_t)tmp[i];
} }
return true;
} }