Compare commits
4 Commits
testing/la
...
999af9d888
Author | SHA256 | Date | |
---|---|---|---|
999af9d888 | |||
8a8bcd078b | |||
59b8c3e2b2 | |||
06c6612ef6 |
@ -16,10 +16,10 @@ static const char *TAG = "smart-oil-heater-control-system-inputs";
|
|||||||
const uint8_t uBurnerFaultPin = 19U;
|
const uint8_t uBurnerFaultPin = 19U;
|
||||||
const uint8_t uDS18B20Pin = 4U;
|
const uint8_t uDS18B20Pin = 4U;
|
||||||
|
|
||||||
const onewire_addr_t uChamperTempSensorAddr = 0x78000000c6c2f728;
|
const onewire_addr_t uChamperTempSensorAddr = 0x3e0000001754be28;
|
||||||
const onewire_addr_t uOutdoorTempSensorAddr = 0x78000000c6c2f728;
|
const onewire_addr_t uOutdoorTempSensorAddr = 0x880000001648e328;
|
||||||
const onewire_addr_t uInletFlowTempSensorAddr = 0x78000000c6c2f728;
|
const onewire_addr_t uInletFlowTempSensorAddr = 0xe59cdef51e64ff28;
|
||||||
const onewire_addr_t uReturnFlowTempSensorAddr = 0x78000000c6c2f728;
|
const onewire_addr_t uReturnFlowTempSensorAddr = 0xa7a8e1531f64ff28;
|
||||||
|
|
||||||
onewire_addr_t uOneWireAddresses[MAX_DN18B20_SENSORS];
|
onewire_addr_t uOneWireAddresses[MAX_DN18B20_SENSORS];
|
||||||
float fDS18B20Temps[MAX_DN18B20_SENSORS];
|
float fDS18B20Temps[MAX_DN18B20_SENSORS];
|
||||||
@ -36,7 +36,7 @@ void taskInput(void *pvParameters);
|
|||||||
void initMeasurement(sMeasurement *pMeasurement);
|
void initMeasurement(sMeasurement *pMeasurement);
|
||||||
void updateAverage(sMeasurement *pMeasurement);
|
void updateAverage(sMeasurement *pMeasurement);
|
||||||
void updatePrediction(sMeasurement *pMeasurement);
|
void updatePrediction(sMeasurement *pMeasurement);
|
||||||
float linearRegressionPredict(const float *samples, size_t count, float futureIndex);
|
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex);
|
||||||
|
|
||||||
void initInputs(void)
|
void initInputs(void)
|
||||||
{
|
{
|
||||||
@ -162,6 +162,7 @@ void updatePrediction(sMeasurement *pMeasurement)
|
|||||||
predict60s->fValue = linearRegressionPredict(
|
predict60s->fValue = linearRegressionPredict(
|
||||||
predict60s->samples,
|
predict60s->samples,
|
||||||
predict60s->bufferCount,
|
predict60s->bufferCount,
|
||||||
|
predict60s->bufferIndex,
|
||||||
predict60s->bufferCount + 60.0f);
|
predict60s->bufferCount + 60.0f);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -217,7 +218,7 @@ void taskInput(void *pvParameters)
|
|||||||
for (int j = 0; j < sSensorCount; j++)
|
for (int j = 0; j < sSensorCount; j++)
|
||||||
{
|
{
|
||||||
float temp_c = fDS18B20Temps[j];
|
float temp_c = fDS18B20Temps[j];
|
||||||
ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c);
|
// ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c);
|
||||||
|
|
||||||
switch ((uint64_t)uOneWireAddresses[j])
|
switch ((uint64_t)uOneWireAddresses[j])
|
||||||
{
|
{
|
||||||
@ -226,17 +227,20 @@ void taskInput(void *pvParameters)
|
|||||||
sChamperTemperature.state = MEASUREMENT_NO_ERROR;
|
sChamperTemperature.state = MEASUREMENT_NO_ERROR;
|
||||||
updateAverage(&sChamperTemperature);
|
updateAverage(&sChamperTemperature);
|
||||||
updatePrediction(&sChamperTemperature);
|
updatePrediction(&sChamperTemperature);
|
||||||
|
break;
|
||||||
|
case ((uint64_t)uOutdoorTempSensorAddr):
|
||||||
sOutdoorTemperature.fCurrentValue = temp_c;
|
sOutdoorTemperature.fCurrentValue = temp_c;
|
||||||
sOutdoorTemperature.state = MEASUREMENT_NO_ERROR;
|
sOutdoorTemperature.state = MEASUREMENT_NO_ERROR;
|
||||||
updateAverage(&sOutdoorTemperature);
|
updateAverage(&sOutdoorTemperature);
|
||||||
updatePrediction(&sOutdoorTemperature);
|
updatePrediction(&sOutdoorTemperature);
|
||||||
|
break;
|
||||||
|
case ((uint64_t)uInletFlowTempSensorAddr):
|
||||||
sInletFlowTemperature.fCurrentValue = temp_c;
|
sInletFlowTemperature.fCurrentValue = temp_c;
|
||||||
sInletFlowTemperature.state = MEASUREMENT_NO_ERROR;
|
sInletFlowTemperature.state = MEASUREMENT_NO_ERROR;
|
||||||
updateAverage(&sInletFlowTemperature);
|
updateAverage(&sInletFlowTemperature);
|
||||||
updatePrediction(&sInletFlowTemperature);
|
updatePrediction(&sInletFlowTemperature);
|
||||||
|
break;
|
||||||
|
case ((uint64_t)uReturnFlowTempSensorAddr):
|
||||||
sReturnFlowTemperature.fCurrentValue = temp_c;
|
sReturnFlowTemperature.fCurrentValue = temp_c;
|
||||||
sReturnFlowTemperature.state = MEASUREMENT_NO_ERROR;
|
sReturnFlowTemperature.state = MEASUREMENT_NO_ERROR;
|
||||||
updateAverage(&sReturnFlowTemperature);
|
updateAverage(&sReturnFlowTemperature);
|
||||||
@ -264,7 +268,7 @@ void taskInput(void *pvParameters)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
float linearRegressionPredict(const float *samples, size_t count, float futureIndex)
|
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex)
|
||||||
{
|
{
|
||||||
if (count == 0)
|
if (count == 0)
|
||||||
return 0.0f; // No prediction possible with no data
|
return 0.0f; // No prediction possible with no data
|
||||||
@ -273,8 +277,11 @@ float linearRegressionPredict(const float *samples, size_t count, float futureIn
|
|||||||
|
|
||||||
for (size_t i = 0; i < count; i++)
|
for (size_t i = 0; i < count; i++)
|
||||||
{
|
{
|
||||||
float x = (float)i; // Time index
|
// Calculate the circular buffer index for the current sample
|
||||||
float y = samples[i]; // Sample value
|
size_t circularIndex = (bufferIndex + i + 1) % count;
|
||||||
|
|
||||||
|
float x = (float)i; // Time index
|
||||||
|
float y = samples[circularIndex]; // Sample value
|
||||||
|
|
||||||
sumX += x;
|
sumX += x;
|
||||||
sumY += y;
|
sumY += y;
|
||||||
@ -284,8 +291,8 @@ float linearRegressionPredict(const float *samples, size_t count, float futureIn
|
|||||||
|
|
||||||
// Calculate slope (m) and intercept (b) of the line: y = mx + b
|
// Calculate slope (m) and intercept (b) of the line: y = mx + b
|
||||||
float denominator = (count * sumX2 - sumX * sumX);
|
float denominator = (count * sumX2 - sumX * sumX);
|
||||||
if (fabs(denominator) < 1e-6) // Avoid division by zero
|
if (fabs(denominator) < 1e-6) // Avoid division by zero
|
||||||
return samples[count - 1]; // Return last value as prediction
|
return samples[bufferIndex]; // Return the latest value as prediction
|
||||||
|
|
||||||
float m = (count * sumXY - sumX * sumY) / denominator;
|
float m = (count * sumXY - sumX * sumY) / denominator;
|
||||||
float b = (sumY - m * sumX) / count;
|
float b = (sumY - m * sumX) / count;
|
||||||
|
Reference in New Issue
Block a user