Merge pull request 'bugfix/linear-regression-prediction' (#19) from bugfix/linear-regression-prediction into main
Reviewed-on: #19
This commit is contained in:
commit
999af9d888
@ -36,7 +36,7 @@ void taskInput(void *pvParameters);
|
||||
void initMeasurement(sMeasurement *pMeasurement);
|
||||
void updateAverage(sMeasurement *pMeasurement);
|
||||
void updatePrediction(sMeasurement *pMeasurement);
|
||||
float linearRegressionPredict(const float *samples, size_t count, float futureIndex);
|
||||
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex);
|
||||
|
||||
void initInputs(void)
|
||||
{
|
||||
@ -162,6 +162,7 @@ void updatePrediction(sMeasurement *pMeasurement)
|
||||
predict60s->fValue = linearRegressionPredict(
|
||||
predict60s->samples,
|
||||
predict60s->bufferCount,
|
||||
predict60s->bufferIndex,
|
||||
predict60s->bufferCount + 60.0f);
|
||||
}
|
||||
|
||||
@ -267,7 +268,7 @@ void taskInput(void *pvParameters)
|
||||
}
|
||||
}
|
||||
|
||||
float linearRegressionPredict(const float *samples, size_t count, float futureIndex)
|
||||
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex)
|
||||
{
|
||||
if (count == 0)
|
||||
return 0.0f; // No prediction possible with no data
|
||||
@ -276,8 +277,11 @@ float linearRegressionPredict(const float *samples, size_t count, float futureIn
|
||||
|
||||
for (size_t i = 0; i < count; i++)
|
||||
{
|
||||
float x = (float)i; // Time index
|
||||
float y = samples[i]; // Sample value
|
||||
// Calculate the circular buffer index for the current sample
|
||||
size_t circularIndex = (bufferIndex + i + 1) % count;
|
||||
|
||||
float x = (float)i; // Time index
|
||||
float y = samples[circularIndex]; // Sample value
|
||||
|
||||
sumX += x;
|
||||
sumY += y;
|
||||
@ -287,8 +291,8 @@ float linearRegressionPredict(const float *samples, size_t count, float futureIn
|
||||
|
||||
// Calculate slope (m) and intercept (b) of the line: y = mx + b
|
||||
float denominator = (count * sumX2 - sumX * sumX);
|
||||
if (fabs(denominator) < 1e-6) // Avoid division by zero
|
||||
return samples[count - 1]; // Return last value as prediction
|
||||
if (fabs(denominator) < 1e-6) // Avoid division by zero
|
||||
return samples[bufferIndex]; // Return the latest value as prediction
|
||||
|
||||
float m = (count * sumXY - sumX * sumY) / denominator;
|
||||
float b = (sumY - m * sumX) / count;
|
||||
|
Loading…
Reference in New Issue
Block a user