Compare commits
17 Commits
testing/la
...
feature/su
Author | SHA256 | Date | |
---|---|---|---|
6eca00200e | |||
ac15376f6b | |||
dcace073d9 | |||
da7a1be183 | |||
2477ccb42a | |||
f66b831666 | |||
66b7f8320e | |||
416cda0f50 | |||
8ca3d97165 | |||
c9b7313608 | |||
fa958dd53b | |||
3771a83fcc | |||
a72c0673b1 | |||
999af9d888 | |||
8a8bcd078b | |||
59b8c3e2b2 | |||
06c6612ef6 |
195
main/control.c
195
main/control.c
@ -8,26 +8,32 @@
|
|||||||
#include "safety.h"
|
#include "safety.h"
|
||||||
#include "sntp.h"
|
#include "sntp.h"
|
||||||
|
|
||||||
#define PERIODIC_INTERVAL 1U // run control loop every 1sec
|
#define PERIODIC_INTERVAL 1U // Run control loop every 1 second
|
||||||
|
|
||||||
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0
|
// Temperature thresholds
|
||||||
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0
|
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0f
|
||||||
#define CHAMPER_TEMPERATURE_TARGET 70.0
|
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0f
|
||||||
#define BURNER_FAULT_DETECTION_THRESHOLD (60U * 3U) // Detect burner fault if after 3 minutes no burner start detected
|
#define CHAMBER_TEMPERATURE_TARGET 80.0f // Max cutoff temperature
|
||||||
|
#define CHAMBER_TEMPERATURE_THRESHOLD 45.0f // Min threshold for burner enable
|
||||||
|
#define OUTDOOR_TEMPERATURE_THRESHOLD 13.0f // Min threshold for burner enable
|
||||||
|
#define CIRCULATION_PUMP_TEMPERATURE_THRESHOLD 30.0f // Min threshold of chamber for circulation pump enable
|
||||||
|
#define BURNER_FAULT_DETECTION_THRESHOLD (60U * 4U) // Burner fault detection after 4 minutes
|
||||||
|
|
||||||
static const char *TAG = "smart-oil-heater-control-system-control";
|
static const char *TAG = "smart-oil-heater-control-system-control";
|
||||||
static eControlState sControlState = CONTROL_STARTING;
|
static eControlState sControlState = CONTROL_STARTING;
|
||||||
|
|
||||||
|
// Control table for daily schedules
|
||||||
static sControlDay aControlTable[] = {
|
static sControlDay aControlTable[] = {
|
||||||
{MONDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
|
{MONDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
|
||||||
{TUESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
|
{TUESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
|
||||||
{WEDNESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
|
{WEDNESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
|
||||||
{THURSDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
|
{THURSDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
|
||||||
{FRIDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{23, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
|
{FRIDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{23, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
|
||||||
{SATURDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{23, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
|
{SATURDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{23, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
|
||||||
{SUNDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}},
|
{SUNDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}},
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// Function prototypes
|
||||||
void taskControl(void *pvParameters);
|
void taskControl(void *pvParameters);
|
||||||
eControlWeekday getCurrentWeekday(void);
|
eControlWeekday getCurrentWeekday(void);
|
||||||
sControlTemperatureEntry getCurrentTemperatureEntry(void);
|
sControlTemperatureEntry getCurrentTemperatureEntry(void);
|
||||||
@ -56,37 +62,37 @@ void initControl(void)
|
|||||||
void taskControl(void *pvParameters)
|
void taskControl(void *pvParameters)
|
||||||
{
|
{
|
||||||
bool bHeatingInAction = false;
|
bool bHeatingInAction = false;
|
||||||
bool bBurnerFaultDetected = false;
|
eBurnerState eBurnerState = BURNER_UNKNOWN;
|
||||||
int64_t i64BurnerEnableTimestamp = esp_timer_get_time();
|
int64_t i64BurnerEnableTimestamp = esp_timer_get_time();
|
||||||
|
|
||||||
while (1)
|
while (1)
|
||||||
{
|
{
|
||||||
vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS);
|
vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS);
|
||||||
|
|
||||||
|
// Check for safety faults
|
||||||
if (getSafetyState() != SAFETY_NO_ERROR)
|
if (getSafetyState() != SAFETY_NO_ERROR)
|
||||||
{
|
{
|
||||||
ESP_LOGW(TAG, "Control not possible due to safety fault!");
|
ESP_LOGW(TAG, "Control not possible due to safety fault!");
|
||||||
sControlState = CONTROL_FAULT_SAFETY;
|
sControlState = CONTROL_FAULT_SAFETY;
|
||||||
if (bHeatingInAction == true)
|
if (bHeatingInAction)
|
||||||
{
|
{
|
||||||
ESP_LOGW(TAG, "Control not possible due to safety fault: Disable burner");
|
ESP_LOGW(TAG, "Disabling burner due to safety fault");
|
||||||
bHeatingInAction = false;
|
bHeatingInAction = false;
|
||||||
setCirculationPumpState(ENABLED);
|
|
||||||
setBurnerState(DISABLED);
|
setBurnerState(DISABLED);
|
||||||
setSafetyControlState(ENABLED);
|
setSafetyControlState(ENABLED);
|
||||||
}
|
}
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Check for SNTP faults
|
||||||
if (getSntpState() != SYNC_SUCCESSFUL)
|
if (getSntpState() != SYNC_SUCCESSFUL)
|
||||||
{
|
{
|
||||||
ESP_LOGW(TAG, "Control not possible due to sntp fault!");
|
ESP_LOGW(TAG, "Control not possible due to SNTP fault!");
|
||||||
sControlState = CONTROL_FAULT_SNTP;
|
sControlState = CONTROL_FAULT_SNTP;
|
||||||
if (bHeatingInAction == true)
|
if (bHeatingInAction)
|
||||||
{
|
{
|
||||||
ESP_LOGW(TAG, "Control not possible due to sntp fault: Disable burner");
|
ESP_LOGW(TAG, "Disabling burner due to SNTP fault");
|
||||||
bHeatingInAction = false;
|
bHeatingInAction = false;
|
||||||
setCirculationPumpState(ENABLED);
|
|
||||||
setBurnerState(DISABLED);
|
setBurnerState(DISABLED);
|
||||||
setSafetyControlState(ENABLED);
|
setSafetyControlState(ENABLED);
|
||||||
}
|
}
|
||||||
@ -94,49 +100,23 @@ void taskControl(void *pvParameters)
|
|||||||
}
|
}
|
||||||
|
|
||||||
sControlTemperatureEntry currentControlEntry = getCurrentTemperatureEntry();
|
sControlTemperatureEntry currentControlEntry = getCurrentTemperatureEntry();
|
||||||
// ESP_LOGI(TAG, "Control Entry Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", currentControlEntry.timestamp.hour, currentControlEntry.timestamp.minute, currentControlEntry.fChamberTemperature, currentControlEntry.fReturnFlowTemperature);
|
|
||||||
|
|
||||||
if (bHeatingInAction == true)
|
// Enable burner if outdoor temperature is low and return flow temperature is cooled down
|
||||||
|
if (!bHeatingInAction && (eBurnerState != BURNER_FAULT))
|
||||||
{
|
{
|
||||||
if (getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature)
|
if (getOutdoorTemperature().average60s.fValue >= OUTDOOR_TEMPERATURE_THRESHOLD)
|
||||||
{
|
{
|
||||||
ESP_LOGI(TAG, "Chamber Target Temperature reached: Disable burner");
|
// ESP_LOGI(TAG, "Outdoor temperature too warm: Disabling heating");
|
||||||
bHeatingInAction = false;
|
|
||||||
setCirculationPumpState(ENABLED);
|
|
||||||
setBurnerState(DISABLED);
|
setBurnerState(DISABLED);
|
||||||
setSafetyControlState(ENABLED);
|
setSafetyControlState(DISABLED);
|
||||||
|
sControlState = CONTROL_OUTDOOR_TOO_WARM;
|
||||||
}
|
}
|
||||||
else
|
else if ((getReturnFlowTemperature().average60s.fValue <= currentControlEntry.fReturnFlowTemperature) &&
|
||||||
|
(getChamberTemperature().fCurrentValue <= CHAMBER_TEMPERATURE_THRESHOLD))
|
||||||
{
|
{
|
||||||
if (bHeatingInAction)
|
ESP_LOGI(TAG, "Enabling burner: Return flow temperature target reached");
|
||||||
{
|
eBurnerState = BURNER_UNKNOWN;
|
||||||
int64_t i64Delta = esp_timer_get_time() - i64BurnerEnableTimestamp;
|
|
||||||
|
|
||||||
if ((i64Delta / 1000000U) >= BURNER_FAULT_DETECTION_THRESHOLD)
|
|
||||||
{
|
|
||||||
if (getBurnerError() == FAULT)
|
|
||||||
{
|
|
||||||
ESP_LOGW(TAG, "Detected burner fault after %lli seconds!", (i64Delta / 1000000U));
|
|
||||||
ESP_LOGW(TAG, "Control not possible due to burner fault: Disable burner");
|
|
||||||
sControlState = CONTROL_FAULT_BURNER;
|
|
||||||
bHeatingInAction = false;
|
|
||||||
bBurnerFaultDetected = true;
|
|
||||||
setCirculationPumpState(ENABLED);
|
|
||||||
setBurnerState(DISABLED);
|
|
||||||
setSafetyControlState(ENABLED);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if ((bHeatingInAction == false) && (bBurnerFaultDetected == false))
|
|
||||||
{
|
|
||||||
if ((getReturnFlowTemperature().average60s.fValue <= currentControlEntry.fReturnFlowTemperature) && (getChamberTemperature().fCurrentValue <= 45.0))
|
|
||||||
{
|
|
||||||
ESP_LOGI(TAG, "Return Flow Target Temperature reached: Enable Burner");
|
|
||||||
bHeatingInAction = true;
|
bHeatingInAction = true;
|
||||||
setCirculationPumpState(ENABLED);
|
|
||||||
setBurnerState(ENABLED);
|
setBurnerState(ENABLED);
|
||||||
setSafetyControlState(ENABLED);
|
setSafetyControlState(ENABLED);
|
||||||
i64BurnerEnableTimestamp = esp_timer_get_time();
|
i64BurnerEnableTimestamp = esp_timer_get_time();
|
||||||
@ -144,10 +124,56 @@ void taskControl(void *pvParameters)
|
|||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
|
// ESP_LOGI(TAG, "Return flow temperature too warm: Disabling heating");
|
||||||
sControlState = CONTROL_RETURN_FLOW_TOO_WARM;
|
sControlState = CONTROL_RETURN_FLOW_TOO_WARM;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
// Disable burner if target temperature is reached or a fault occurred
|
||||||
|
if (bHeatingInAction)
|
||||||
|
{
|
||||||
|
if ((getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature) ||
|
||||||
|
(getChamberTemperature().predict60s.fValue >= currentControlEntry.fChamberTemperature))
|
||||||
|
{
|
||||||
|
ESP_LOGI(TAG, "Chamber target temperature reached: Disabling burner");
|
||||||
|
bHeatingInAction = false;
|
||||||
|
setBurnerState(DISABLED);
|
||||||
|
setSafetyControlState(ENABLED);
|
||||||
|
}
|
||||||
|
else if (esp_timer_get_time() - i64BurnerEnableTimestamp >= BURNER_FAULT_DETECTION_THRESHOLD * 1000000U)
|
||||||
|
{
|
||||||
|
if (eBurnerState == BURNER_UNKNOWN)
|
||||||
|
{
|
||||||
|
if (getBurnerError() == FAULT)
|
||||||
|
{
|
||||||
|
// ESP_LOGW(TAG, "Burner fault detected: Disabling burner");
|
||||||
|
bHeatingInAction = false;
|
||||||
|
eBurnerState = BURNER_FAULT;
|
||||||
|
sControlState = CONTROL_FAULT_BURNER;
|
||||||
|
setBurnerState(DISABLED);
|
||||||
|
setSafetyControlState(ENABLED);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// ESP_LOGI(TAG, "No burner fault detected: Marking burner as fired");
|
||||||
|
eBurnerState = BURNER_FIRED;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Manage circulation pump
|
||||||
|
if (getChamberTemperature().fCurrentValue <= CIRCULATION_PUMP_TEMPERATURE_THRESHOLD)
|
||||||
|
{
|
||||||
|
// ESP_LOGI(TAG, "Burner cooled down: Disabling circulation pump");
|
||||||
|
setCirculationPumpState(DISABLED);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// ESP_LOGI(TAG, "Burner heated: Enabling circulation pump");
|
||||||
|
setCirculationPumpState(ENABLED);
|
||||||
|
}
|
||||||
|
} // End of while(1)
|
||||||
}
|
}
|
||||||
|
|
||||||
eControlState getControlState(void)
|
eControlState getControlState(void)
|
||||||
@ -160,73 +186,38 @@ eControlWeekday getCurrentWeekday(void)
|
|||||||
time_t now;
|
time_t now;
|
||||||
struct tm *timeinfo;
|
struct tm *timeinfo;
|
||||||
|
|
||||||
// Get the current time
|
|
||||||
time(&now);
|
time(&now);
|
||||||
timeinfo = localtime(&now); // Convert to local time
|
timeinfo = localtime(&now);
|
||||||
|
|
||||||
// Get the day of the week (0 = Sunday, 1 = Monday, ..., 6 = Saturday)
|
|
||||||
int day = timeinfo->tm_wday;
|
int day = timeinfo->tm_wday;
|
||||||
|
return (eControlWeekday)((day == 0) ? 6 : day - 1);
|
||||||
// Adjust so that Monday = 0, Sunday = 6
|
|
||||||
if (day == 0)
|
|
||||||
{
|
|
||||||
day = 6; // Sunday becomes 6
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
day -= 1; // Shift other days to make Monday = 0
|
|
||||||
}
|
|
||||||
|
|
||||||
return (eControlWeekday)day;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
sControlTemperatureEntry getCurrentTemperatureEntry(void)
|
sControlTemperatureEntry getCurrentTemperatureEntry(void)
|
||||||
{
|
{
|
||||||
sControlTemperatureEntry result = aControlTable[0].aTemperatureEntries[0];
|
sControlTemperatureEntry result = aControlTable[0].aTemperatureEntries[0];
|
||||||
eControlWeekday currentDay = getCurrentWeekday();
|
eControlWeekday currentDay = getCurrentWeekday();
|
||||||
|
|
||||||
time_t now;
|
time_t now;
|
||||||
struct tm timeinfo;
|
struct tm timeinfo;
|
||||||
|
|
||||||
// Get the current time
|
|
||||||
time(&now);
|
time(&now);
|
||||||
// Convert to local time structure
|
|
||||||
localtime_r(&now, &timeinfo);
|
localtime_r(&now, &timeinfo);
|
||||||
// Extract hour and minute
|
|
||||||
int hour = timeinfo.tm_hour; // Hour (0-23)
|
|
||||||
int minute = timeinfo.tm_min; // Minute (0-59)u
|
|
||||||
|
|
||||||
// ESP_LOGI(TAG, "Current Day: %i Hour: %i Minute: %i", currentDay, hour, minute);
|
int hour = timeinfo.tm_hour;
|
||||||
|
int minute = timeinfo.tm_min;
|
||||||
|
|
||||||
for (int i = 0; i < sizeof(aControlTable) / sizeof(aControlTable[0]); i++)
|
for (int i = 0; i < sizeof(aControlTable) / sizeof(aControlTable[0]); i++)
|
||||||
{
|
{
|
||||||
/// loops through days
|
|
||||||
// ESP_LOGI(TAG, "Day %d: %d", i + 1, aControlTable[i].day);
|
|
||||||
// int numberOfEntries = aControlTable[i].entryCount;
|
|
||||||
// ESP_LOGI(TAG, "Number of entries: %i", numberOfEntries);
|
|
||||||
|
|
||||||
for (int j = 0; j < aControlTable[i].entryCount; j++)
|
for (int j = 0; j < aControlTable[i].entryCount; j++)
|
||||||
{
|
{
|
||||||
if ((aControlTable[i].day) > currentDay)
|
if ((aControlTable[i].day > currentDay) ||
|
||||||
|
(aControlTable[i].day == currentDay && aControlTable[i].aTemperatureEntries[j].timestamp.hour > hour) ||
|
||||||
|
(aControlTable[i].day == currentDay && aControlTable[i].aTemperatureEntries[j].timestamp.hour == hour && aControlTable[i].aTemperatureEntries[j].timestamp.minute >= minute))
|
||||||
{
|
{
|
||||||
// ESP_LOGI(TAG, "DAY Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
|
return aControlTable[i].aTemperatureEntries[j];
|
||||||
return result;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if ((aControlTable[i].day == currentDay) && (aControlTable[i].aTemperatureEntries[j].timestamp.hour > hour))
|
|
||||||
{
|
|
||||||
// ESP_LOGI(TAG, "HOUR Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
if ((aControlTable[i].day == currentDay) && (aControlTable[i].aTemperatureEntries[j].timestamp.hour == hour) && (aControlTable[i].aTemperatureEntries[j].timestamp.minute == minute))
|
|
||||||
{
|
|
||||||
// ESP_LOGI(TAG, "MINUTE Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
// ESP_LOGI(TAG, "SET Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
|
|
||||||
result = aControlTable[i].aTemperatureEntries[j];
|
result = aControlTable[i].aTemperatureEntries[j];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
@ -14,6 +14,13 @@ typedef enum _ControlState
|
|||||||
CONTROL_FAULT_SNTP,
|
CONTROL_FAULT_SNTP,
|
||||||
} eControlState;
|
} eControlState;
|
||||||
|
|
||||||
|
typedef enum _BurnerState
|
||||||
|
{
|
||||||
|
BURNER_UNKNOWN, // Burner is disabled or state after enabling is still unkown
|
||||||
|
BURNER_FIRED, // Burner fired successfully
|
||||||
|
BURNER_FAULT // Burner was unable to fire successfully
|
||||||
|
} eBurnerState;
|
||||||
|
|
||||||
typedef enum _ControlWeekday
|
typedef enum _ControlWeekday
|
||||||
{
|
{
|
||||||
MONDAY,
|
MONDAY,
|
||||||
|
@ -16,10 +16,10 @@ static const char *TAG = "smart-oil-heater-control-system-inputs";
|
|||||||
const uint8_t uBurnerFaultPin = 19U;
|
const uint8_t uBurnerFaultPin = 19U;
|
||||||
const uint8_t uDS18B20Pin = 4U;
|
const uint8_t uDS18B20Pin = 4U;
|
||||||
|
|
||||||
const onewire_addr_t uChamperTempSensorAddr = 0x78000000c6c2f728;
|
const onewire_addr_t uChamperTempSensorAddr = 0xd00000108cd01d28;
|
||||||
const onewire_addr_t uOutdoorTempSensorAddr = 0x78000000c6c2f728;
|
const onewire_addr_t uOutdoorTempSensorAddr = 0xd70000108a9b9128;
|
||||||
const onewire_addr_t uInletFlowTempSensorAddr = 0x78000000c6c2f728;
|
const onewire_addr_t uInletFlowTempSensorAddr = 0x410000108b8c0628;
|
||||||
const onewire_addr_t uReturnFlowTempSensorAddr = 0x78000000c6c2f728;
|
const onewire_addr_t uReturnFlowTempSensorAddr = 0x90000108cc77c28;
|
||||||
|
|
||||||
onewire_addr_t uOneWireAddresses[MAX_DN18B20_SENSORS];
|
onewire_addr_t uOneWireAddresses[MAX_DN18B20_SENSORS];
|
||||||
float fDS18B20Temps[MAX_DN18B20_SENSORS];
|
float fDS18B20Temps[MAX_DN18B20_SENSORS];
|
||||||
@ -36,7 +36,7 @@ void taskInput(void *pvParameters);
|
|||||||
void initMeasurement(sMeasurement *pMeasurement);
|
void initMeasurement(sMeasurement *pMeasurement);
|
||||||
void updateAverage(sMeasurement *pMeasurement);
|
void updateAverage(sMeasurement *pMeasurement);
|
||||||
void updatePrediction(sMeasurement *pMeasurement);
|
void updatePrediction(sMeasurement *pMeasurement);
|
||||||
float linearRegressionPredict(const float *samples, size_t count, float futureIndex);
|
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex);
|
||||||
|
|
||||||
void initInputs(void)
|
void initInputs(void)
|
||||||
{
|
{
|
||||||
@ -162,6 +162,7 @@ void updatePrediction(sMeasurement *pMeasurement)
|
|||||||
predict60s->fValue = linearRegressionPredict(
|
predict60s->fValue = linearRegressionPredict(
|
||||||
predict60s->samples,
|
predict60s->samples,
|
||||||
predict60s->bufferCount,
|
predict60s->bufferCount,
|
||||||
|
predict60s->bufferIndex,
|
||||||
predict60s->bufferCount + 60.0f);
|
predict60s->bufferCount + 60.0f);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -217,7 +218,7 @@ void taskInput(void *pvParameters)
|
|||||||
for (int j = 0; j < sSensorCount; j++)
|
for (int j = 0; j < sSensorCount; j++)
|
||||||
{
|
{
|
||||||
float temp_c = fDS18B20Temps[j];
|
float temp_c = fDS18B20Temps[j];
|
||||||
ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c);
|
// ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c);
|
||||||
|
|
||||||
switch ((uint64_t)uOneWireAddresses[j])
|
switch ((uint64_t)uOneWireAddresses[j])
|
||||||
{
|
{
|
||||||
@ -226,17 +227,20 @@ void taskInput(void *pvParameters)
|
|||||||
sChamperTemperature.state = MEASUREMENT_NO_ERROR;
|
sChamperTemperature.state = MEASUREMENT_NO_ERROR;
|
||||||
updateAverage(&sChamperTemperature);
|
updateAverage(&sChamperTemperature);
|
||||||
updatePrediction(&sChamperTemperature);
|
updatePrediction(&sChamperTemperature);
|
||||||
|
break;
|
||||||
|
case ((uint64_t)uOutdoorTempSensorAddr):
|
||||||
sOutdoorTemperature.fCurrentValue = temp_c;
|
sOutdoorTemperature.fCurrentValue = temp_c;
|
||||||
sOutdoorTemperature.state = MEASUREMENT_NO_ERROR;
|
sOutdoorTemperature.state = MEASUREMENT_NO_ERROR;
|
||||||
updateAverage(&sOutdoorTemperature);
|
updateAverage(&sOutdoorTemperature);
|
||||||
updatePrediction(&sOutdoorTemperature);
|
updatePrediction(&sOutdoorTemperature);
|
||||||
|
break;
|
||||||
|
case ((uint64_t)uInletFlowTempSensorAddr):
|
||||||
sInletFlowTemperature.fCurrentValue = temp_c;
|
sInletFlowTemperature.fCurrentValue = temp_c;
|
||||||
sInletFlowTemperature.state = MEASUREMENT_NO_ERROR;
|
sInletFlowTemperature.state = MEASUREMENT_NO_ERROR;
|
||||||
updateAverage(&sInletFlowTemperature);
|
updateAverage(&sInletFlowTemperature);
|
||||||
updatePrediction(&sInletFlowTemperature);
|
updatePrediction(&sInletFlowTemperature);
|
||||||
|
break;
|
||||||
|
case ((uint64_t)uReturnFlowTempSensorAddr):
|
||||||
sReturnFlowTemperature.fCurrentValue = temp_c;
|
sReturnFlowTemperature.fCurrentValue = temp_c;
|
||||||
sReturnFlowTemperature.state = MEASUREMENT_NO_ERROR;
|
sReturnFlowTemperature.state = MEASUREMENT_NO_ERROR;
|
||||||
updateAverage(&sReturnFlowTemperature);
|
updateAverage(&sReturnFlowTemperature);
|
||||||
@ -264,7 +268,7 @@ void taskInput(void *pvParameters)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
float linearRegressionPredict(const float *samples, size_t count, float futureIndex)
|
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex)
|
||||||
{
|
{
|
||||||
if (count == 0)
|
if (count == 0)
|
||||||
return 0.0f; // No prediction possible with no data
|
return 0.0f; // No prediction possible with no data
|
||||||
@ -273,8 +277,11 @@ float linearRegressionPredict(const float *samples, size_t count, float futureIn
|
|||||||
|
|
||||||
for (size_t i = 0; i < count; i++)
|
for (size_t i = 0; i < count; i++)
|
||||||
{
|
{
|
||||||
float x = (float)i; // Time index
|
// Calculate the circular buffer index for the current sample
|
||||||
float y = samples[i]; // Sample value
|
size_t circularIndex = (bufferIndex + i + 1) % count;
|
||||||
|
|
||||||
|
float x = (float)i; // Time index
|
||||||
|
float y = samples[circularIndex]; // Sample value
|
||||||
|
|
||||||
sumX += x;
|
sumX += x;
|
||||||
sumY += y;
|
sumY += y;
|
||||||
@ -284,8 +291,8 @@ float linearRegressionPredict(const float *samples, size_t count, float futureIn
|
|||||||
|
|
||||||
// Calculate slope (m) and intercept (b) of the line: y = mx + b
|
// Calculate slope (m) and intercept (b) of the line: y = mx + b
|
||||||
float denominator = (count * sumX2 - sumX * sumX);
|
float denominator = (count * sumX2 - sumX * sumX);
|
||||||
if (fabs(denominator) < 1e-6) // Avoid division by zero
|
if (fabs(denominator) < 1e-6) // Avoid division by zero
|
||||||
return samples[count - 1]; // Return last value as prediction
|
return samples[bufferIndex]; // Return the latest value as prediction
|
||||||
|
|
||||||
float m = (count * sumXY - sumX * sumY) / denominator;
|
float m = (count * sumXY - sumX * sumY) / denominator;
|
||||||
float b = (sumY - m * sumX) / count;
|
float b = (sumY - m * sumX) / count;
|
||||||
|
Reference in New Issue
Block a user