Compare commits
	
		
			14 Commits
		
	
	
		
			testing/la
			...
			da7a1be183
		
	
	| Author | SHA256 | Date | |
|---|---|---|---|
| da7a1be183 | |||
| 2477ccb42a | |||
| f66b831666 | |||
| 66b7f8320e | |||
| 416cda0f50 | |||
| 8ca3d97165 | |||
| c9b7313608 | |||
| fa958dd53b | |||
| 3771a83fcc | |||
| a72c0673b1 | |||
| 999af9d888 | |||
| 8a8bcd078b | |||
| 59b8c3e2b2 | |||
| 06c6612ef6 | 
							
								
								
									
										163
									
								
								main/control.c
									
									
									
									
									
								
							
							
						
						
									
										163
									
								
								main/control.c
									
									
									
									
									
								
							| @ -8,26 +8,31 @@ | ||||
| #include "safety.h" | ||||
| #include "sntp.h" | ||||
|  | ||||
| #define PERIODIC_INTERVAL 1U // run control loop every 1sec | ||||
| #define PERIODIC_INTERVAL 1U // Run control loop every 1 second | ||||
|  | ||||
| #define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0 | ||||
| #define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0 | ||||
| #define CHAMPER_TEMPERATURE_TARGET 70.0 | ||||
| #define BURNER_FAULT_DETECTION_THRESHOLD (60U * 3U) // Detect burner fault if after 3 minutes no burner start detected | ||||
| // Temperature thresholds | ||||
| #define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0f | ||||
| #define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0f | ||||
| #define CHAMBER_TEMPERATURE_TARGET 80.0f            // Max cutoff temperature | ||||
| #define CHAMBER_TEMPERATURE_THRESHOLD 45.0f         // Min threshold for burner enable | ||||
| #define OUTDOOR_TEMPERATURE_THRESHOLD 15.0f         // Min threshold for burner enable | ||||
| #define BURNER_FAULT_DETECTION_THRESHOLD (60U * 4U) // Burner fault detection after 4 minutes | ||||
|  | ||||
| static const char *TAG = "smart-oil-heater-control-system-control"; | ||||
| static eControlState sControlState = CONTROL_STARTING; | ||||
|  | ||||
| // Control table for daily schedules | ||||
| static sControlDay aControlTable[] = { | ||||
|     {MONDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, | ||||
|     {TUESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, | ||||
|     {WEDNESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, | ||||
|     {THURSDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, | ||||
|     {FRIDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{23, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, | ||||
|     {SATURDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{23, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, | ||||
|     {SUNDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, | ||||
|     {MONDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}}, | ||||
|     {TUESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}}, | ||||
|     {WEDNESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}}, | ||||
|     {THURSDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}}, | ||||
|     {FRIDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{23, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}}, | ||||
|     {SATURDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{23, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}}, | ||||
|     {SUNDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMBER_TEMPERATURE_TARGET}, {{22, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMBER_TEMPERATURE_TARGET}}}, | ||||
| }; | ||||
|  | ||||
| // Function prototypes | ||||
| void taskControl(void *pvParameters); | ||||
| eControlWeekday getCurrentWeekday(void); | ||||
| sControlTemperatureEntry getCurrentTemperatureEntry(void); | ||||
| @ -53,23 +58,31 @@ void initControl(void) | ||||
|     } | ||||
| } | ||||
|  | ||||
| typedef enum _BurnerState | ||||
| { | ||||
|     BURNER_UNKNOWN, | ||||
|     BURNER_FIRED, | ||||
|     BURNER_FAULT | ||||
| } eBurnerState; | ||||
|  | ||||
| void taskControl(void *pvParameters) | ||||
| { | ||||
|     bool bHeatingInAction = false; | ||||
|     bool bBurnerFaultDetected = false; | ||||
|     eBurnerState eBurnerState = BURNER_UNKNOWN; | ||||
|     int64_t i64BurnerEnableTimestamp = esp_timer_get_time(); | ||||
|  | ||||
|     while (1) | ||||
|     { | ||||
|         vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS); | ||||
|  | ||||
|         // Handle safety faults | ||||
|         if (getSafetyState() != SAFETY_NO_ERROR) | ||||
|         { | ||||
|             ESP_LOGW(TAG, "Control not possible due to safety fault!"); | ||||
|             sControlState = CONTROL_FAULT_SAFETY; | ||||
|             if (bHeatingInAction == true) | ||||
|             if (bHeatingInAction) | ||||
|             { | ||||
|                 ESP_LOGW(TAG, "Control not possible due to safety fault: Disable burner"); | ||||
|                 ESP_LOGW(TAG, "Disabling burner due to safety fault"); | ||||
|                 bHeatingInAction = false; | ||||
|                 setCirculationPumpState(ENABLED); | ||||
|                 setBurnerState(DISABLED); | ||||
| @ -78,13 +91,14 @@ void taskControl(void *pvParameters) | ||||
|             continue; | ||||
|         } | ||||
|  | ||||
|         // Handle SNTP faults | ||||
|         if (getSntpState() != SYNC_SUCCESSFUL) | ||||
|         { | ||||
|             ESP_LOGW(TAG, "Control not possible due to sntp fault!"); | ||||
|             ESP_LOGW(TAG, "Control not possible due to SNTP fault!"); | ||||
|             sControlState = CONTROL_FAULT_SNTP; | ||||
|             if (bHeatingInAction == true) | ||||
|             if (bHeatingInAction) | ||||
|             { | ||||
|                 ESP_LOGW(TAG, "Control not possible due to sntp fault: Disable burner"); | ||||
|                 ESP_LOGW(TAG, "Disabling burner due to SNTP fault"); | ||||
|                 bHeatingInAction = false; | ||||
|                 setCirculationPumpState(ENABLED); | ||||
|                 setBurnerState(DISABLED); | ||||
| @ -93,48 +107,58 @@ void taskControl(void *pvParameters) | ||||
|             continue; | ||||
|         } | ||||
|  | ||||
|         // Get current temperature entry | ||||
|         sControlTemperatureEntry currentControlEntry = getCurrentTemperatureEntry(); | ||||
|         // ESP_LOGI(TAG, "Control Entry Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", currentControlEntry.timestamp.hour, currentControlEntry.timestamp.minute, currentControlEntry.fChamberTemperature, currentControlEntry.fReturnFlowTemperature); | ||||
|  | ||||
|         if (bHeatingInAction == true) | ||||
|         if (bHeatingInAction) | ||||
|         { | ||||
|             if (getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature) | ||||
|             if ((getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature) || | ||||
|                 (getChamberTemperature().predict60s.fValue >= currentControlEntry.fChamberTemperature)) | ||||
|             { | ||||
|                 ESP_LOGI(TAG, "Chamber Target Temperature reached: Disable burner"); | ||||
|                 ESP_LOGI(TAG, "Chamber target temperature reached: Disabling burner"); | ||||
|                 bHeatingInAction = false; | ||||
|                 setCirculationPumpState(ENABLED); | ||||
|                 setBurnerState(DISABLED); | ||||
|                 setSafetyControlState(ENABLED); | ||||
|             } | ||||
|             else if (esp_timer_get_time() - i64BurnerEnableTimestamp >= BURNER_FAULT_DETECTION_THRESHOLD * 1000000U) | ||||
|             { | ||||
|                 if (eBurnerState == BURNER_UNKNOWN) | ||||
|                 { | ||||
|                     if (getBurnerError() == FAULT) | ||||
|                     { | ||||
|                         ESP_LOGW(TAG, "Burner fault detected after threshold!"); | ||||
|                         bHeatingInAction = false; | ||||
|                         eBurnerState = BURNER_FAULT; | ||||
|                         sControlState = CONTROL_FAULT_BURNER; | ||||
|                         setCirculationPumpState(ENABLED); | ||||
|                         setBurnerState(DISABLED); | ||||
|                         setSafetyControlState(ENABLED); | ||||
|                     } | ||||
|                     else | ||||
|                     { | ||||
|                 if (bHeatingInAction) | ||||
|                 { | ||||
|                     int64_t i64Delta = esp_timer_get_time() - i64BurnerEnableTimestamp; | ||||
|                         ESP_LOGW(TAG, "No Burner fault detected after threshold!"); | ||||
|                         eBurnerState = BURNER_FIRED; | ||||
|                     } | ||||
|                 } | ||||
|             } | ||||
|         } | ||||
|  | ||||
|                     if ((i64Delta / 1000000U) >= BURNER_FAULT_DETECTION_THRESHOLD) | ||||
|         if (!bHeatingInAction && (eBurnerState != BURNER_FAULT)) | ||||
|         { | ||||
|                         if (getBurnerError() == FAULT) | ||||
|             if (getOutdoorTemperature().average60s.fValue >= OUTDOOR_TEMPERATURE_THRESHOLD) | ||||
|             { | ||||
|                             ESP_LOGW(TAG, "Detected burner fault after %lli seconds!", (i64Delta / 1000000U)); | ||||
|                             ESP_LOGW(TAG, "Control not possible due to burner fault: Disable burner"); | ||||
|                             sControlState = CONTROL_FAULT_BURNER; | ||||
|                             bHeatingInAction = false; | ||||
|                             bBurnerFaultDetected = true; | ||||
|                             setCirculationPumpState(ENABLED); | ||||
|                 // ESP_LOGI(TAG, "Outdoor temperature too warm: Disabling heating"); | ||||
|                 setCirculationPumpState(DISABLED); | ||||
|                 setBurnerState(DISABLED); | ||||
|                             setSafetyControlState(ENABLED); | ||||
|                 setSafetyControlState(DISABLED); | ||||
|                 sControlState = CONTROL_OUTDOOR_TOO_WARM; | ||||
|             } | ||||
|                     } | ||||
|                 } | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         if ((bHeatingInAction == false) && (bBurnerFaultDetected == false)) | ||||
|             else if ((getReturnFlowTemperature().average60s.fValue <= currentControlEntry.fReturnFlowTemperature) && | ||||
|                      (getChamberTemperature().fCurrentValue <= CHAMBER_TEMPERATURE_THRESHOLD)) | ||||
|             { | ||||
|             if ((getReturnFlowTemperature().average60s.fValue <= currentControlEntry.fReturnFlowTemperature) && (getChamberTemperature().fCurrentValue <= 45.0)) | ||||
|             { | ||||
|                 ESP_LOGI(TAG, "Return Flow Target Temperature reached: Enable Burner"); | ||||
|                 ESP_LOGI(TAG, "Enabling burner: Return flow temperature target reached"); | ||||
|                 eBurnerState = BURNER_UNKNOWN; | ||||
|                 bHeatingInAction = true; | ||||
|                 setCirculationPumpState(ENABLED); | ||||
|                 setBurnerState(ENABLED); | ||||
| @ -160,71 +184,36 @@ eControlWeekday getCurrentWeekday(void) | ||||
|     time_t now; | ||||
|     struct tm *timeinfo; | ||||
|  | ||||
|     // Get the current time | ||||
|     time(&now); | ||||
|     timeinfo = localtime(&now); // Convert to local time | ||||
|     timeinfo = localtime(&now); | ||||
|  | ||||
|     // Get the day of the week (0 = Sunday, 1 = Monday, ..., 6 = Saturday) | ||||
|     int day = timeinfo->tm_wday; | ||||
|  | ||||
|     // Adjust so that Monday = 0, Sunday = 6 | ||||
|     if (day == 0) | ||||
|     { | ||||
|         day = 6; // Sunday becomes 6 | ||||
|     } | ||||
|     else | ||||
|     { | ||||
|         day -= 1; // Shift other days to make Monday = 0 | ||||
|     } | ||||
|  | ||||
|     return (eControlWeekday)day; | ||||
|     return (eControlWeekday)((day == 0) ? 6 : day - 1); | ||||
| } | ||||
|  | ||||
| sControlTemperatureEntry getCurrentTemperatureEntry(void) | ||||
| { | ||||
|     sControlTemperatureEntry result = aControlTable[0].aTemperatureEntries[0]; | ||||
|     eControlWeekday currentDay = getCurrentWeekday(); | ||||
|  | ||||
|     time_t now; | ||||
|     struct tm timeinfo; | ||||
|  | ||||
|     // Get the current time | ||||
|     time(&now); | ||||
|     // Convert to local time structure | ||||
|     localtime_r(&now, &timeinfo); | ||||
|     // Extract hour and minute | ||||
|     int hour = timeinfo.tm_hour;  // Hour (0-23) | ||||
|     int minute = timeinfo.tm_min; // Minute (0-59)u | ||||
|  | ||||
|     // ESP_LOGI(TAG, "Current Day: %i Hour: %i Minute: %i", currentDay, hour, minute); | ||||
|     int hour = timeinfo.tm_hour; | ||||
|     int minute = timeinfo.tm_min; | ||||
|  | ||||
|     for (int i = 0; i < sizeof(aControlTable) / sizeof(aControlTable[0]); i++) | ||||
|     { | ||||
|         /// loops through days | ||||
|         // ESP_LOGI(TAG, "Day %d: %d", i + 1, aControlTable[i].day); | ||||
|         // int numberOfEntries = aControlTable[i].entryCount; | ||||
|         // ESP_LOGI(TAG, "Number of entries: %i", numberOfEntries); | ||||
|  | ||||
|         for (int j = 0; j < aControlTable[i].entryCount; j++) | ||||
|         { | ||||
|             if ((aControlTable[i].day) > currentDay) | ||||
|             if ((aControlTable[i].day > currentDay) || | ||||
|                 (aControlTable[i].day == currentDay && aControlTable[i].aTemperatureEntries[j].timestamp.hour > hour) || | ||||
|                 (aControlTable[i].day == currentDay && aControlTable[i].aTemperatureEntries[j].timestamp.hour == hour && aControlTable[i].aTemperatureEntries[j].timestamp.minute >= minute)) | ||||
|             { | ||||
|                 // ESP_LOGI(TAG, "DAY Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature); | ||||
|                 return result; | ||||
|                 return aControlTable[i].aTemperatureEntries[j]; | ||||
|             } | ||||
|  | ||||
|             if ((aControlTable[i].day == currentDay) && (aControlTable[i].aTemperatureEntries[j].timestamp.hour > hour)) | ||||
|             { | ||||
|                 // ESP_LOGI(TAG, "HOUR Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature); | ||||
|                 return result; | ||||
|             } | ||||
|  | ||||
|             if ((aControlTable[i].day == currentDay) && (aControlTable[i].aTemperatureEntries[j].timestamp.hour == hour) && (aControlTable[i].aTemperatureEntries[j].timestamp.minute == minute)) | ||||
|             { | ||||
|                 // ESP_LOGI(TAG, "MINUTE Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature); | ||||
|                 return result; | ||||
|             } | ||||
|  | ||||
|             // ESP_LOGI(TAG, "SET Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature); | ||||
|             result = aControlTable[i].aTemperatureEntries[j]; | ||||
|         } | ||||
|     } | ||||
|  | ||||
| @ -16,10 +16,10 @@ static const char *TAG = "smart-oil-heater-control-system-inputs"; | ||||
| const uint8_t uBurnerFaultPin = 19U; | ||||
| const uint8_t uDS18B20Pin = 4U; | ||||
|  | ||||
| const onewire_addr_t uChamperTempSensorAddr = 0x78000000c6c2f728; | ||||
| const onewire_addr_t uOutdoorTempSensorAddr = 0x78000000c6c2f728; | ||||
| const onewire_addr_t uInletFlowTempSensorAddr = 0x78000000c6c2f728; | ||||
| const onewire_addr_t uReturnFlowTempSensorAddr = 0x78000000c6c2f728; | ||||
| const onewire_addr_t uChamperTempSensorAddr = 0xd00000108cd01d28; | ||||
| const onewire_addr_t uOutdoorTempSensorAddr = 0xd70000108a9b9128; | ||||
| const onewire_addr_t uInletFlowTempSensorAddr = 0x410000108b8c0628; | ||||
| const onewire_addr_t uReturnFlowTempSensorAddr = 0x90000108cc77c28; | ||||
|  | ||||
| onewire_addr_t uOneWireAddresses[MAX_DN18B20_SENSORS]; | ||||
| float fDS18B20Temps[MAX_DN18B20_SENSORS]; | ||||
| @ -36,7 +36,7 @@ void taskInput(void *pvParameters); | ||||
| void initMeasurement(sMeasurement *pMeasurement); | ||||
| void updateAverage(sMeasurement *pMeasurement); | ||||
| void updatePrediction(sMeasurement *pMeasurement); | ||||
| float linearRegressionPredict(const float *samples, size_t count, float futureIndex); | ||||
| float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex); | ||||
|  | ||||
| void initInputs(void) | ||||
| { | ||||
| @ -162,6 +162,7 @@ void updatePrediction(sMeasurement *pMeasurement) | ||||
|     predict60s->fValue = linearRegressionPredict( | ||||
|         predict60s->samples, | ||||
|         predict60s->bufferCount, | ||||
|         predict60s->bufferIndex, | ||||
|         predict60s->bufferCount + 60.0f); | ||||
| } | ||||
|  | ||||
| @ -217,7 +218,7 @@ void taskInput(void *pvParameters) | ||||
|                         for (int j = 0; j < sSensorCount; j++) | ||||
|                         { | ||||
|                             float temp_c = fDS18B20Temps[j]; | ||||
|                             ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c); | ||||
|                             // ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c); | ||||
|  | ||||
|                             switch ((uint64_t)uOneWireAddresses[j]) | ||||
|                             { | ||||
| @ -226,17 +227,20 @@ void taskInput(void *pvParameters) | ||||
|                                 sChamperTemperature.state = MEASUREMENT_NO_ERROR; | ||||
|                                 updateAverage(&sChamperTemperature); | ||||
|                                 updatePrediction(&sChamperTemperature); | ||||
|  | ||||
|                                 break; | ||||
|                             case ((uint64_t)uOutdoorTempSensorAddr): | ||||
|                                 sOutdoorTemperature.fCurrentValue = temp_c; | ||||
|                                 sOutdoorTemperature.state = MEASUREMENT_NO_ERROR; | ||||
|                                 updateAverage(&sOutdoorTemperature); | ||||
|                                 updatePrediction(&sOutdoorTemperature); | ||||
|  | ||||
|                                 break; | ||||
|                             case ((uint64_t)uInletFlowTempSensorAddr): | ||||
|                                 sInletFlowTemperature.fCurrentValue = temp_c; | ||||
|                                 sInletFlowTemperature.state = MEASUREMENT_NO_ERROR; | ||||
|                                 updateAverage(&sInletFlowTemperature); | ||||
|                                 updatePrediction(&sInletFlowTemperature); | ||||
|  | ||||
|                                 break; | ||||
|                             case ((uint64_t)uReturnFlowTempSensorAddr): | ||||
|                                 sReturnFlowTemperature.fCurrentValue = temp_c; | ||||
|                                 sReturnFlowTemperature.state = MEASUREMENT_NO_ERROR; | ||||
|                                 updateAverage(&sReturnFlowTemperature); | ||||
| @ -264,7 +268,7 @@ void taskInput(void *pvParameters) | ||||
|     } | ||||
| } | ||||
|  | ||||
| float linearRegressionPredict(const float *samples, size_t count, float futureIndex) | ||||
| float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex) | ||||
| { | ||||
|     if (count == 0) | ||||
|         return 0.0f; // No prediction possible with no data | ||||
| @ -273,8 +277,11 @@ float linearRegressionPredict(const float *samples, size_t count, float futureIn | ||||
|  | ||||
|     for (size_t i = 0; i < count; i++) | ||||
|     { | ||||
|         // Calculate the circular buffer index for the current sample | ||||
|         size_t circularIndex = (bufferIndex + i + 1) % count; | ||||
|  | ||||
|         float x = (float)i;               // Time index | ||||
|         float y = samples[i]; // Sample value | ||||
|         float y = samples[circularIndex]; // Sample value | ||||
|  | ||||
|         sumX += x; | ||||
|         sumY += y; | ||||
| @ -285,7 +292,7 @@ float linearRegressionPredict(const float *samples, size_t count, float futureIn | ||||
|     // Calculate slope (m) and intercept (b) of the line: y = mx + b | ||||
|     float denominator = (count * sumX2 - sumX * sumX); | ||||
|     if (fabs(denominator) < 1e-6)    // Avoid division by zero | ||||
|         return samples[count - 1]; // Return last value as prediction | ||||
|         return samples[bufferIndex]; // Return the latest value as prediction | ||||
|  | ||||
|     float m = (count * sumXY - sumX * sumY) / denominator; | ||||
|     float b = (sumY - m * sumX) / count; | ||||
|  | ||||
		Reference in New Issue
	
	Block a user