C implementation for TheThingsNetwork

This commit is contained in:
Manuel Bleichenbacher 2021-07-25 23:53:54 +02:00
parent 36edf92944
commit 281ba52155
5 changed files with 886 additions and 477 deletions

14
.vscode/settings.json vendored
View File

@ -1,19 +1,11 @@
{
"files.associations": {
"provisioning.h": "c",
"config.h": "c",
"sdkconfig.h": "c",
"oslmic.h": "c",
"hal_esp32.h": "c",
"esp_log.h": "c",
"nvs_flash.h": "c",
"__config": "c",
"__nullptr": "c",
"stdint.h": "c",
"*.ipp": "c",
"algorithm": "c",
"random": "c",
"complex": "c",
"valarray": "c"
"lmic.h": "c",
"ttn_provisioning.h": "c",
"lorabase.h": "c"
}
}

View File

@ -2,37 +2,30 @@
*
* ttn-esp32 - The Things Network device library for ESP-IDF / SX127x
*
* Copyright (c) 2018 Manuel Bleichenbacher
* Copyright (c) 2018-2021 Manuel Bleichenbacher
*
* Licensed under MIT License
* https://opensource.org/licenses/MIT
*
* High-level API for ttn-esp32.
* High-level C++ API for ttn-esp32.
*******************************************************************************/
#ifndef _THETHINGSNETWORK_H_
#define _THETHINGSNETWORK_H_
#include <stdint.h>
#include "driver/spi_master.h"
#include "ttn.h"
/**
* @brief Constant for indicating that a pin is not connected
*/
#define TTN_NOT_CONNECTED 0xff
typedef uint8_t port_t;
typedef ttn_port_t port_t;
/**
* @brief Response codes
*/
enum TTNResponseCode
{
kTTNErrorTransmissionFailed = -1,
kTTNErrorUnexpected = -10,
kTTNSuccessfulTransmission = 1,
kTTNSuccessfulReceive = 2
kTTNErrorTransmissionFailed = TTN_ERROR_TRANSMISSION_FAILED,
kTTNErrorUnexpected = TTN_ERROR_UNEXPECTED,
kTTNSuccessfulTransmission = TTN_SUCCESSFUL_TRANSMISSION,
kTTNSuccessfulReceive = TTN_SUCCESSFUL_RECEIVE
};
@ -44,19 +37,19 @@ enum TTNRxTxWindow
/**
* @brief Outside RX/TX window
*/
kTTNIdleWindow = 0,
kTTNIdleWindow = TTN_WINDOW_IDLE,
/**
* @brief Transmission window (up to RX1 window)
*/
kTTNTxWindow = 1,
kTTNTxWindow = TTN_WINDOW_TX,
/**
* @brief Reception window 1 (up to RX2 window)
*/
kTTNRx1Window = 2,
kTTNRx1Window = TTN_WINDOW_RX1,
/**
* @brief Reception window 2
*/
kTTNRx2Window = 3
kTTNRx2Window = TTN_WINDOW_RX2
};
@ -68,35 +61,35 @@ enum TTNSpreadingFactor
/**
* @brief Unused / undefined spreading factor
*/
kTTNSFNone = 0,
kTTNSFNone = TTN_SF_NONE,
/**
* @brief Frequency Shift Keying (FSK)
*/
kTTNFSK = 1,
kTTNFSK = TTN_FSK,
/**
* @brief Spreading Factor 7 (SF7)
*/
kTTNSF7 = 2,
kTTNSF7 = TTN_SF7,
/**
* @brief Spreading Factor 8 (SF8)
*/
kTTNSF8 = 3,
kTTNSF8 = TTN_SF8,
/**
* @brief Spreading Factor 9 (SF9)
*/
kTTNSF9 = 4,
kTTNSF9 = TTN_SF9,
/**
* @brief Spreading Factor 10 (SF10)
*/
kTTNSF10 = 5,
kTTNSF10 = TTN_SF10,
/**
* @brief Spreading Factor 11 (SF11)
*/
kTTNSF11 = 6,
kTTNSF11 = TTN_SF11,
/**
* @brief Spreading Factor 12 (SF12)
*/
kTTNSF12 = 7
kTTNSF12 = TTN_SF12
};
@ -108,19 +101,19 @@ enum TTNBandwidth
/**
* @brief Undefined/unused bandwidth
*/
kTTNBWNone = 0,
kTTNBWNone = TTN_BW_NONE,
/**
* @brief Bandwidth of 125 kHz
*/
kTTNBW125 = 1,
kTTNBW125 = TTN_BW125,
/**
* @brief Bandwidth of 250 kHz
*/
kTTNBW250 = 2,
kTTNBW250 = TTN_BW250,
/**
* @brief Bandwidth of 500 kHz
*/
kTTNBW500 = 3
kTTNBW500 = TTN_BW500
};
@ -167,12 +160,12 @@ public:
/**
* @brief Constructs a new The Things Network device instance.
*/
TheThingsNetwork();
TheThingsNetwork() { ttn_init(); }
/**
* @brief Destroys the The Things Network device instance.
*/
~TheThingsNetwork();
~TheThingsNetwork() { }
/**
* @brief Resets the LoRaWAN radio.
@ -180,7 +173,7 @@ public:
* To restart communication, join() must be called.
* It neither clears the provisioned keys nor the configured pins.
*/
void reset();
void reset() { ttn_reset(); }
/**
* @brief Configures the pins used to communicate with the LoRaWAN radio chip.
@ -195,7 +188,10 @@ public:
* @param dio0 The GPIO pin number connected to the radio chip's DIO0 pin
* @param dio1 The GPIO pin number connected to the radio chip's DIO1 pin
*/
void configurePins(spi_host_device_t spi_host, uint8_t nss, uint8_t rxtx, uint8_t rst, uint8_t dio0, uint8_t dio1);
void configurePins(spi_host_device_t spi_host, uint8_t nss, uint8_t rxtx, uint8_t rst, uint8_t dio0, uint8_t dio1)
{
ttn_configure_pins(spi_host, nss, rxtx, rst, dio0, dio1);
}
/**
* @brief Sets the credentials needed to activate the device via OTAA, without activating it.
@ -210,7 +206,7 @@ public:
* @param appKey App Key of the device (32 character string with hexadecimal data)
* @return `true` if the provisioning was successful, `false` if the provisioning failed
*/
bool provision(const char *devEui, const char *appEui, const char *appKey);
bool provision(const char *devEui, const char *appEui, const char *appKey) { return ttn_provision(devEui, appEui, appKey); }
/**
* @brief Sets the information needed to activate the device via OTAA, using the MAC to generate the device EUI
@ -234,14 +230,14 @@ public:
* @param appKey App Key of the device (32 character string with hexadecimal data)
* @return `true` if the provisioning was successful, `false` if the provisioning failed
*/
bool provisionWithMAC(const char *appEui, const char *appKey);
bool provisionWithMAC(const char *appEui, const char *appKey) { return ttn_provision_with_mac(appEui, appKey); }
/**
* @brief Starts task listening on configured UART for AT commands.
*
* Run `make menuconfig` to configure it.
*/
void startProvisioningTask();
void startProvisioningTask() { ttn_start_provisioning_task(); }
/**
* @brief Waits until the device EUI, app EUI and app key have been provisioned
@ -251,7 +247,7 @@ public:
* or call of join(const char*, const char*, const char*), this function
* immediately returns.
*/
void waitForProvisioning();
void waitForProvisioning() { ttn_wait_for_provisioning(); }
/**
* @brief Activates the device via OTAA.
@ -263,7 +259,7 @@ public:
*
* @return `true` if the activation was succesful, `false` if the activation failed
*/
bool join();
bool join() { return ttn_join_provisioned(); }
/**
* @brief Sets the device EUI, app EUI and app key and activate the device via OTAA.
@ -277,7 +273,7 @@ public:
* @param appKey App Key of the device (32 character string with hexadecimal data)
* @return `true` if the activation was succesful, `false` if the activation failed
*/
bool join(const char *devEui, const char *appEui, const char *appKey);
bool join(const char *devEui, const char *appEui, const char *appKey) { return ttn_join(devEui, appEui, appKey); }
/**
* @brief Transmits a message
@ -292,7 +288,10 @@ public:
* @param confirm flag indicating if a confirmation should be requested. Defaults to `false`
* @return `kTTNSuccessfulTransmission` for successful transmission, `kTTNErrorTransmissionFailed` for failed transmission, `kTTNErrorUnexpected` for unexpected error
*/
TTNResponseCode transmitMessage(const uint8_t *payload, size_t length, port_t port = 1, bool confirm = false);
TTNResponseCode transmitMessage(const uint8_t *payload, size_t length, port_t port = 1, bool confirm = false)
{
return static_cast<TTNResponseCode>(ttn_transmit_message(payload, length, port, confirm));
}
/**
* @brief Sets the function to be called when a message is received
@ -308,7 +307,7 @@ public:
*
* @param callback the callback function
*/
void onMessage(TTNMessageCallback callback);
void onMessage(TTNMessageCallback callback) { ttn_on_message(callback); }
/**
* @brief Checks if device EUI, app EUI and app key have been stored in non-volatile storage
@ -316,7 +315,7 @@ public:
*
* @return `true` if they are stored, complete and of the correct size, `false` otherwise
*/
bool isProvisioned();
bool isProvisioned() { return ttn_is_provisioned(); }
/**
* @brief Sets the RSSI calibration value for LBT (Listen Before Talk).
@ -327,14 +326,14 @@ public:
*
* @param rssiCal RSSI calibration value, in dB
*/
void setRSSICal(int8_t rssiCal);
void setRSSICal(int8_t rssiCal) { ttn_set_rssi_cal(rssiCal); }
/**
* Returns whether Adaptive Data Rate (ADR) is enabled.
*
* @return `true` if enabled, `false` if disabled
*/
bool adrEnabled();
bool adrEnabled() { return ttn_adr_enabled(); }
/**
* @brief Enables or disabled Adaptive Data Rate (ADR).
@ -344,7 +343,7 @@ public:
*
* @param enabled `true` to enable, `false` to disable
*/
void setAdrEnabled(bool enabled);
void setAdrEnabled(bool enabled) { ttn_set_adr_enabled(enabled); }
/**
* @brief Stops all activies and shuts down the RF module and the background tasks.
@ -352,20 +351,20 @@ public:
* To restart communication, startup() and join() must be called.
* it neither clears the provisioned keys nor the configured pins.
*/
void shutdown();
void shutdown() { ttn_shutdown(); }
/**
* @brief Restarts the background tasks and RF module.
*
* This member function must only be called after a call to shutdowna().
*/
void startup();
void startup() { ttn_startup(); }
/**
* @brief Gets current RX/TX window
* @return window
*/
TTNRxTxWindow rxTxWindow();
TTNRxTxWindow rxTxWindow() { return static_cast<TTNRxTxWindow>(ttn_rx_tx_window()); }
/**
* @brief Gets the RF settings for the specified window
@ -377,19 +376,19 @@ public:
* @brief Gets the RF settings of the last (or ongoing) transmission.
* @return RF settings
*/
TTNRFSettings txSettings();
TTNRFSettings txSettings() { return getRFSettings(kTTNTxWindow); }
/**
* @brief Gets the RF settings of the last (or ongoing) reception of RX window 1.
* @return RF settings
*/
TTNRFSettings rx1Settings();
TTNRFSettings rx1Settings() { return getRFSettings(kTTNRx1Window); }
/**
* @brief Gets the RF settings of the last (or ongoing) reception of RX window 2.
* @return RF settings
*/
TTNRFSettings rx2Settings();
TTNRFSettings rx2Settings() { return getRFSettings(kTTNRx2Window); }
/**
* @brief Gets the received signal strength indicator (RSSI).
@ -398,12 +397,7 @@ public:
*
* @return RSSI, in dBm
*/
int rssi();
private:
TTNMessageCallback messageCallback;
bool joinCore();
int rssi() { return ttn_rssi(); }
};
#endif

400
include/ttn.h Normal file
View File

@ -0,0 +1,400 @@
/*******************************************************************************
*
* ttn-esp32 - The Things Network device library for ESP-IDF / SX127x
*
* Copyright (c) 2018-2021 Manuel Bleichenbacher
*
* Licensed under MIT License
* https://opensource.org/licenses/MIT
*
* High-level C API for ttn-esp32.
*******************************************************************************/
#ifndef TTN_C_H
#define TTN_C_H
#include <stdint.h>
#include "driver/spi_master.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Constant for indicating that a pin is not connected
*/
#define TTN_NOT_CONNECTED 0xff
typedef uint8_t ttn_port_t;
/**
* @brief Response codes
*/
typedef enum
{
TTN_ERROR_TRANSMISSION_FAILED = -1,
TTN_ERROR_UNEXPECTED = -10,
TTN_SUCCESSFUL_TRANSMISSION = 1,
TTN_SUCCESSFUL_RECEIVE = 2
} ttn_response_code_t;
/**
* @brief RX/TX window
*/
typedef enum
{
/**
* @brief Outside RX/TX window
*/
TTN_WINDOW_IDLE = 0,
/**
* @brief Transmission window (up to RX1 window)
*/
TTN_WINDOW_TX = 1,
/**
* @brief Reception window 1 (up to RX2 window)
*/
TTN_WINDOW_RX1 = 2,
/**
* @brief Reception window 2
*/
TTN_WINDOW_RX2 = 3
} ttn_rx_tx_window_t;
/**
* @brief Spreading Factor
*/
typedef enum
{
/**
* @brief Unused / undefined spreading factor
*/
TTN_SF_NONE = 0,
/**
* @brief Frequency Shift Keying (FSK)
*/
TTN_FSK = 1,
/**
* @brief Spreading Factor 7 (SF7)
*/
TTN_SF7 = 2,
/**
* @brief Spreading Factor 8 (SF8)
*/
TTN_SF8 = 3,
/**
* @brief Spreading Factor 9 (SF9)
*/
TTN_SF9 = 4,
/**
* @brief Spreading Factor 10 (SF10)
*/
TTN_SF10 = 5,
/**
* @brief Spreading Factor 11 (SF11)
*/
TTN_SF11 = 6,
/**
* @brief Spreading Factor 12 (SF12)
*/
TTN_SF12 = 7
} ttn_spreading_factor_t;
/**
* @brief Bandwidth
*/
typedef enum
{
/**
* @brief Undefined/unused bandwidth
*/
TTN_BW_NONE = 0,
/**
* @brief Bandwidth of 125 kHz
*/
TTN_BW125 = 1,
/**
* @brief Bandwidth of 250 kHz
*/
TTN_BW250 = 2,
/**
* @brief Bandwidth of 500 kHz
*/
TTN_BW500 = 3
} ttn_bandwidth_t;
/**
* @brief RF settings for TX or RX
*/
typedef struct
{
/**
* @brief Spreading Factor (SF)
*/
ttn_spreading_factor_t spreading_factor;
/**
* @brief Bandwidth (BW)
*/
ttn_bandwidth_t bandwidth;
/**
* @brief Frequency, in Hz
*/
uint32_t frequency;
} ttn_rf_settings_t;
/**
* @brief Callback for recieved messages
*
* @param payload pointer to the received bytes
* @param length number of received bytes
* @param port port the message was received on
*/
typedef void (*ttn_message_cb)(const uint8_t* payload, size_t length, ttn_port_t port);
/**
* @brief Constructs a new The Things Network device instance.
*/
void ttn_init(void);
/**
* @brief Resets the LoRaWAN radio.
*
* To restart communication, join() must be called.
* It neither clears the provisioned keys nor the configured pins.
*/
void ttn_reset(void);
/**
* @brief Configures the pins used to communicate with the LoRaWAN radio chip.
*
* Before calling this member function, the SPI bus needs to be configured using `spi_bus_initialize()`.
* Additionally, `gpio_install_isr_service()` must have been called to initialize the GPIO ISR handler service.
*
* @param spi_host The SPI bus/peripherial to use (`SPI_HOST`, `HSPI_HOST` or `VSPI_HOST`).
* @param nss The GPIO pin number connected to the radio chip's NSS pin (serving as the SPI chip select)
* @param rxtx The GPIO pin number connected to the radio chip's RXTX pin (`TTN_NOT_CONNECTED` if not connected)
* @param rst The GPIO pin number connected to the radio chip's RST pin (`TTN_NOT_CONNECTED` if not connected)
* @param dio0 The GPIO pin number connected to the radio chip's DIO0 pin
* @param dio1 The GPIO pin number connected to the radio chip's DIO1 pin
*/
void ttn_configure_pins(spi_host_device_t spi_host, uint8_t nss, uint8_t rxtx, uint8_t rst, uint8_t dio0, uint8_t dio1);
/**
* @brief Sets the credentials needed to activate the device via OTAA, without activating it.
*
* The provided device EUI, app EUI and app key are saved in non-volatile memory. Before
* this function is called, `nvs_flash_init()` must have been called once.
*
* Call join() to activate the device.
*
* @param dev_eui Device EUI (16 character string with hexadecimal data)
* @param app_eui Application EUI of the device (16 character string with hexadecimal data)
* @param app_key App Key of the device (32 character string with hexadecimal data)
* @return `true` if the provisioning was successful, `false` if the provisioning failed
*/
bool ttn_provision(const char *dev_eui, const char *app_eui, const char *app_key);
/**
* @brief Sets the information needed to activate the device via OTAA, using the MAC to generate the device EUI
* and without activating it.
*
* The generated device EUI and the provided app EUI and app key are saved in non-volatile memory. Before
* this function is called, 'nvs_flash_init' must have been called once.
*
* The device EUI is generated by retrieving the ESP32's WiFi MAC address and expanding it into a device EUI
* by adding FFFE in the middle. So the MAC address A0:B1:C2:01:02:03 becomes the EUI A0B1C2FFFE010203.
* This hexadecimal data can be entered into the Device EUI field in the TTN console.
*
* Generating the device EUI from the MAC address allows to flash the same app EUI and app key to a batch of
* devices. However, using the same app key for multiple devices is insecure. Only use this approach if
* it is okay for that the LoRa communication of your application can easily be intercepted and that
* forged data can be injected.
*
* Call join() to activate.
*
* @param app_eui Application EUI of the device (16 character string with hexadecimal data)
* @param app_key App Key of the device (32 character string with hexadecimal data)
* @return `true` if the provisioning was successful, `false` if the provisioning failed
*/
bool ttn_provision_with_mac(const char *app_eui, const char *app_key);
/**
* @brief Starts task listening on configured UART for AT commands.
*
* Run `make menuconfig` to configure it.
*/
void ttn_start_provisioning_task(void);
/**
* @brief Waits until the device EUI, app EUI and app key have been provisioned
* by the provisioning task.
*
* If the device has already been provisioned (stored data in NVS, call of provision()
* or call of join(const char*, const char*, const char*), this function
* immediately returns.
*/
void ttn_wait_for_provisioning(void);
/**
* @brief Activates the device via OTAA.
*
* The app EUI, app key and dev EUI must have already been provisioned by a call to provision().
* Before this function is called, `nvs_flash_init()` must have been called once.
*
* The function blocks until the activation has completed or failed.
*
* @return `true` if the activation was succesful, `false` if the activation failed
*/
bool ttn_join_provisioned(void);
/**
* @brief Sets the device EUI, app EUI and app key and activate the device via OTAA.
*
* The device EUI, app EUI and app key are NOT saved in non-volatile memory.
*
* The function blocks until the activation has completed or failed.
*
* @param dev_eui Device EUI (16 character string with hexadecimal data)
* @param app_eui Application EUI of the device (16 character string with hexadecimal data)
* @param app_key App Key of the device (32 character string with hexadecimal data)
* @return `true` if the activation was succesful, `false` if the activation failed
*/
bool ttn_join(const char *dev_eui, const char *app_eui, const char *app_key);
/**
* @brief Transmits a message
*
* The function blocks until the message could be transmitted and a message has been received
* in the subsequent receive window (or the window expires). Additionally, the function will
* first wait until the duty cycle allows a transmission (enforcing the duty cycle limits).
*
* @param payload bytes to be transmitted
* @param length number of bytes to be transmitted
* @param port port (use 1 as default)
* @param confirm flag indicating if a confirmation should be requested (use `false` as default)
* @return `kTTNSuccessfulTransmission` for successful transmission, `kTTNErrorTransmissionFailed` for failed transmission, `kTTNErrorUnexpected` for unexpected error
*/
ttn_response_code_t ttn_transmit_message(const uint8_t *payload, size_t length, ttn_port_t port, bool confirm);
/**
* @brief Sets the function to be called when a message is received
*
* When a message is received, the specified function is called. The
* message, its length and the port number are provided as
* parameters. The values are only valid during the duration of the
* callback. So they must be immediately processed or copied.
*
* Messages are received as a result of transmitMessage(). The callback is called
* in the task that called any of these functions and it occurs before these functions
* return control to the caller.
*
* @param callback the callback function
*/
void ttn_on_message(ttn_message_cb callback);
/**
* @brief Checks if device EUI, app EUI and app key have been stored in non-volatile storage
* or have been provided as by a call to join(const char*, const char*, const char*).
*
* @return `true` if they are stored, complete and of the correct size, `false` otherwise
*/
bool ttn_is_provisioned(void);
/**
* @brief Sets the RSSI calibration value for LBT (Listen Before Talk).
*
* This value is added to RSSI measured prior to decision. It must include the guardband.
* Ignored in US, EU, IN and other countries where LBT is not required.
* Defaults to 10 dB.
*
* @param rssi_cal RSSI calibration value, in dB
*/
void ttn_set_rssi_cal(int8_t rssi_cal);
/**
* Returns whether Adaptive Data Rate (ADR) is enabled.
*
* @return `true` if enabled, `false` if disabled
*/
bool ttn_adr_enabled(void);
/**
* @brief Enables or disabled Adaptive Data Rate (ADR).
*
* ADR is enabled by default. It optimizes data rate, airtime and energy consumption
* for devices with stable RF conditions. It should be turned off for mobile devices.
*
* @param enabled `true` to enable, `false` to disable
*/
void ttn_set_adr_enabled(bool enabled);
/**
* @brief Stops all activies and shuts down the RF module and the background tasks.
*
* To restart communication, startup() and join() must be called.
* it neither clears the provisioned keys nor the configured pins.
*/
void ttn_shutdown(void);
/**
* @brief Restarts the background tasks and RF module.
*
* This member function must only be called after a call to shutdowna().
*/
void ttn_startup(void);
/**
* @brief Gets current RX/TX window
* @return window
*/
ttn_rx_tx_window_t ttn_rx_tx_window(void);
/**
* @brief Gets the RF settings for the specified window
* @param window RX/TX windows (valid values are `kTTNTxWindow`, `kTTNRx1Window` and `kTTNRx2Window`)
*/
ttn_rf_settings_t ttn_get_rf_settings(ttn_rx_tx_window_t window);
/**
* @brief Gets the RF settings of the last (or ongoing) transmission.
* @return RF settings
*/
ttn_rf_settings_t ttn_tx_settings(void);
/**
* @brief Gets the RF settings of the last (or ongoing) reception of RX window 1.
* @return RF settings
*/
ttn_rf_settings_t ttn_rx1_settings(void);
/**
* @brief Gets the RF settings of the last (or ongoing) reception of RX window 2.
* @return RF settings
*/
ttn_rf_settings_t ttn_rx2_settings(void);
/**
* @brief Gets the received signal strength indicator (RSSI).
*
* RSSI is the measured signal strength of the last recevied message (incl. join responses).
*
* @return RSSI, in dBm
*/
int ttn_rssi();
#ifdef __cplusplus
}
#endif
#endif

View File

@ -2,422 +2,23 @@
*
* ttn-esp32 - The Things Network device library for ESP-IDF / SX127x
*
* Copyright (c) 2018-2019 Manuel Bleichenbacher
* Copyright (c) 2018-2021 Manuel Bleichenbacher
*
* Licensed under MIT License
* https://opensource.org/licenses/MIT
*
* High-level API for ttn-esp32.
* High-level C++ API for ttn-esp32.
*******************************************************************************/
#include "freertos/FreeRTOS.h"
#include "esp_event.h"
#include "esp_log.h"
#include "hal/hal_esp32.h"
#include "lmic/lmic.h"
#include "TheThingsNetwork.h"
#include "ttn_provisioning.h"
#include "ttn_logging.h"
/**
* @brief Reason the user code is waiting
*/
enum TTNWaitingReason
{
eWaitingNone,
eWaitingForJoin,
eWaitingForTransmission
};
/**
* @brief Event type
*/
enum TTNEvent {
eEvtNone,
eEvtJoinCompleted,
eEvtJoinFailed,
eEvtMessageReceived,
eEvtTransmissionCompleted,
eEvtTransmissionFailed
};
/**
* @brief Event message sent from LMIC task to waiting client task
*/
struct TTNLmicEvent {
TTNLmicEvent(TTNEvent ev = eEvtNone): event(ev) { }
TTNEvent event;
uint8_t port;
const uint8_t* message;
size_t messageSize;
};
static const char *TAG = "ttn";
static TheThingsNetwork* ttnInstance;
static QueueHandle_t lmicEventQueue = nullptr;
static TTNWaitingReason waitingReason = eWaitingNone;
static TTNRFSettings lastRfSettings[4];
static TTNRxTxWindow currentWindow;
static void eventCallback(void* userData, ev_t event);
static void messageReceivedCallback(void *userData, uint8_t port, const uint8_t *message, size_t messageSize);
static void messageTransmittedCallback(void *userData, int success);
static void saveRFSettings(TTNRFSettings& rfSettings);
static void clearRFSettings(TTNRFSettings& rfSettings);
TheThingsNetwork::TheThingsNetwork()
: messageCallback(nullptr)
{
#if defined(TTN_IS_DISABLED)
ESP_LOGE(TAG, "TTN is disabled. Configure a frequency plan using 'make menuconfig'");
ASSERT(0);
#endif
ASSERT(ttnInstance == nullptr);
ttnInstance = this;
hal_esp32_init_critical_section();
}
TheThingsNetwork::~TheThingsNetwork()
{
// nothing to do
}
void TheThingsNetwork::configurePins(spi_host_device_t spi_host, uint8_t nss, uint8_t rxtx, uint8_t rst, uint8_t dio0, uint8_t dio1)
{
hal_esp32_configure_pins(spi_host, nss, rxtx, rst, dio0, dio1);
#if LMIC_ENABLE_event_logging
ttn_log_init();
#endif
LMIC_registerEventCb(eventCallback, nullptr);
LMIC_registerRxMessageCb(messageReceivedCallback, nullptr);
os_init_ex(nullptr);
reset();
lmicEventQueue = xQueueCreate(4, sizeof(TTNLmicEvent));
ASSERT(lmicEventQueue != nullptr);
hal_esp32_start_lmic_task();
}
void TheThingsNetwork::reset()
{
hal_esp32_enter_critical_section();
LMIC_reset();
LMIC_setClockError(MAX_CLOCK_ERROR * 4 / 100);
waitingReason = eWaitingNone;
hal_esp32_leave_critical_section();
}
void TheThingsNetwork::shutdown()
{
hal_esp32_enter_critical_section();
LMIC_shutdown();
hal_esp32_stop_lmic_task();
waitingReason = eWaitingNone;
hal_esp32_leave_critical_section();
}
void TheThingsNetwork::startup()
{
hal_esp32_enter_critical_section();
LMIC_reset();
hal_esp32_start_lmic_task();
hal_esp32_leave_critical_section();
}
bool TheThingsNetwork::provision(const char *devEui, const char *appEui, const char *appKey)
{
if (!ttn_provisioning_decode_keys(devEui, appEui, appKey))
return false;
return ttn_provisioning_save_keys();
}
bool TheThingsNetwork::provisionWithMAC(const char *appEui, const char *appKey)
{
if (!ttn_provisioning_from_mac(appEui, appKey))
return false;
return ttn_provisioning_save_keys();
}
void TheThingsNetwork::startProvisioningTask()
{
#if defined(TTN_HAS_AT_COMMANDS)
ttn_provisioning_start_task();
#else
ESP_LOGE(TAG, "AT commands are disabled. Change the configuration using 'make menuconfig'");
ASSERT(0);
esp_restart();
#endif
}
void TheThingsNetwork::waitForProvisioning()
{
#if defined(TTN_HAS_AT_COMMANDS)
if (isProvisioned())
{
ESP_LOGI(TAG, "Device is already provisioned");
return;
}
while (!ttn_provisioning_have_keys())
vTaskDelay(pdMS_TO_TICKS(1000));
ESP_LOGI(TAG, "Device successfully provisioned");
#else
ESP_LOGE(TAG, "AT commands are disabled. Change the configuration using 'make menuconfig'");
ASSERT(0);
esp_restart();
#endif
}
bool TheThingsNetwork::join(const char *devEui, const char *appEui, const char *appKey)
{
if (!ttn_provisioning_decode_keys(devEui, appEui, appKey))
return false;
return joinCore();
}
bool TheThingsNetwork::join()
{
if (!ttn_provisioning_have_keys())
{
if (!ttn_provisioning_restore_keys(false))
return false;
}
return joinCore();
}
bool TheThingsNetwork::joinCore()
{
if (!ttn_provisioning_have_keys())
{
ESP_LOGW(TAG, "Device EUI, App EUI and/or App key have not been provided");
return false;
}
hal_esp32_enter_critical_section();
xQueueReset(lmicEventQueue);
waitingReason = eWaitingForJoin;
LMIC_startJoining();
hal_esp32_wake_up();
hal_esp32_leave_critical_section();
TTNLmicEvent event;
xQueueReceive(lmicEventQueue, &event, portMAX_DELAY);
return event.event == eEvtJoinCompleted;
}
TTNResponseCode TheThingsNetwork::transmitMessage(const uint8_t *payload, size_t length, port_t port, bool confirm)
{
hal_esp32_enter_critical_section();
if (waitingReason != eWaitingNone || (LMIC.opmode & OP_TXRXPEND) != 0)
{
hal_esp32_leave_critical_section();
return kTTNErrorTransmissionFailed;
}
waitingReason = eWaitingForTransmission;
LMIC.client.txMessageCb = messageTransmittedCallback;
LMIC.client.txMessageUserData = nullptr;
LMIC_setTxData2(port, (xref2u1_t)payload, length, confirm);
hal_esp32_wake_up();
hal_esp32_leave_critical_section();
while (true)
{
TTNLmicEvent result;
xQueueReceive(lmicEventQueue, &result, portMAX_DELAY);
switch (result.event)
{
case eEvtMessageReceived:
if (messageCallback != nullptr)
messageCallback(result.message, result.messageSize, result.port);
break;
case eEvtTransmissionCompleted:
return kTTNSuccessfulTransmission;
case eEvtTransmissionFailed:
return kTTNErrorTransmissionFailed;
default:
ASSERT(0);
}
}
}
void TheThingsNetwork::onMessage(TTNMessageCallback callback)
{
messageCallback = callback;
}
bool TheThingsNetwork::isProvisioned()
{
if (ttn_provisioning_have_keys())
return true;
ttn_provisioning_restore_keys(true);
return ttn_provisioning_have_keys();
}
void TheThingsNetwork::setRSSICal(int8_t rssiCal)
{
hal_esp32_set_rssi_cal(rssiCal);
}
bool TheThingsNetwork::adrEnabled()
{
return LMIC.adrEnabled != 0;
}
void TheThingsNetwork::setAdrEnabled(bool enabled)
{
LMIC_setAdrMode(enabled);
}
TTNRFSettings TheThingsNetwork::getRFSettings(TTNRxTxWindow window)
{
int index = static_cast<int>(window) & 0x03;
return lastRfSettings[index];
}
TTNRFSettings TheThingsNetwork::txSettings()
{
return lastRfSettings[static_cast<int>(kTTNTxWindow)];
}
TTNRFSettings TheThingsNetwork::rx1Settings()
{
return lastRfSettings[static_cast<int>(kTTNRx1Window)];
}
TTNRFSettings TheThingsNetwork::rx2Settings()
{
return lastRfSettings[static_cast<int>(kTTNRx2Window)];
}
TTNRxTxWindow TheThingsNetwork::rxTxWindow()
{
return currentWindow;
}
int TheThingsNetwork::rssi()
{
return LMIC.rssi;
}
// --- Callbacks ---
#if CONFIG_LOG_DEFAULT_LEVEL >= 3 || LMIC_ENABLE_event_logging
const char *eventNames[] = { LMIC_EVENT_NAME_TABLE__INIT };
#endif
// Called by LMIC when an LMIC event (join, join failed, reset etc.) occurs
void eventCallback(void* userData, ev_t event)
{
// update monitoring information
switch(event)
{
case EV_TXSTART:
currentWindow = kTTNTxWindow;
saveRFSettings(lastRfSettings[static_cast<int>(kTTNTxWindow)]);
clearRFSettings(lastRfSettings[static_cast<int>(kTTNRx1Window)]);
clearRFSettings(lastRfSettings[static_cast<int>(kTTNRx2Window)]);
break;
case EV_RXSTART:
if (currentWindow != kTTNRx1Window)
{
currentWindow = kTTNRx1Window;
saveRFSettings(lastRfSettings[static_cast<int>(kTTNRx1Window)]);
}
else
{
currentWindow = kTTNRx2Window;
saveRFSettings(lastRfSettings[static_cast<int>(kTTNRx2Window)]);
}
break;
default:
currentWindow = kTTNIdleWindow;
break;
};
#if LMIC_ENABLE_event_logging
ttn_log_event(event, eventNames[event], 0);
#elif CONFIG_LOG_DEFAULT_LEVEL >= 3
ESP_LOGI(TAG, "event %s", eventNames[event]);
#endif
TTNEvent ttnEvent = eEvtNone;
if (waitingReason == eWaitingForJoin)
{
if (event == EV_JOINED)
{
ttnEvent = eEvtJoinCompleted;
}
else if (event == EV_REJOIN_FAILED || event == EV_RESET)
{
ttnEvent = eEvtJoinFailed;
}
}
if (ttnEvent == eEvtNone)
return;
TTNLmicEvent result(ttnEvent);
waitingReason = eWaitingNone;
xQueueSend(lmicEventQueue, &result, pdMS_TO_TICKS(100));
}
// Called by LMIC when a message has been received
void messageReceivedCallback(void *userData, uint8_t port, const uint8_t *message, size_t nMessage)
{
TTNLmicEvent result(eEvtMessageReceived);
result.port = port;
result.message = message;
result.messageSize = nMessage;
xQueueSend(lmicEventQueue, &result, pdMS_TO_TICKS(100));
}
// Called by LMIC when a message has been transmitted (or the transmission failed)
void messageTransmittedCallback(void *userData, int success)
{
waitingReason = eWaitingNone;
TTNLmicEvent result(success ? eEvtTransmissionCompleted : eEvtTransmissionFailed);
xQueueSend(lmicEventQueue, &result, pdMS_TO_TICKS(100));
}
// --- Helpers
void saveRFSettings(TTNRFSettings& rfSettings)
{
rfSettings.spreadingFactor = static_cast<TTNSpreadingFactor>(getSf(LMIC.rps) + 1);
rfSettings.bandwidth = static_cast<TTNBandwidth>(getBw(LMIC.rps) + 1);
rfSettings.frequency = LMIC.freq;
}
void clearRFSettings(TTNRFSettings& rfSettings)
{
memset(&rfSettings, 0, sizeof(rfSettings));
ttn_rf_settings_t settings = ttn_get_rf_settings(static_cast<ttn_rx_tx_window_t>(window));
TTNRFSettings result;
result.spreadingFactor = static_cast<TTNSpreadingFactor>(settings.spreading_factor);
result.bandwidth = static_cast<TTNBandwidth>(settings.bandwidth);
result.frequency = settings.frequency;
return result;
}

422
src/ttn.c Normal file
View File

@ -0,0 +1,422 @@
/*******************************************************************************
*
* ttn-esp32 - The Things Network device library for ESP-IDF / SX127x
*
* Copyright (c) 2018-2021 Manuel Bleichenbacher
*
* Licensed under MIT License
* https://opensource.org/licenses/MIT
*
* High-level C API for ttn-esp32.
*******************************************************************************/
#include "lmic/lmic.h"
#include "ttn.h"
#include "ttn_provisioning.h"
#include "ttn_logging.h"
#include "hal/hal_esp32.h"
#include "freertos/FreeRTOS.h"
#include "esp_event.h"
#include "esp_log.h"
#define TAG "ttn"
/**
* @brief Reason the user code is waiting
*/
typedef enum
{
TTN_WAITING_NONE,
TTN_WAITING_FOR_JOIN,
TTN_WAITING_FOR_TRANSMISSION
} ttn_waiting_reason_t;
/**
* @brief Event type
*/
typedef enum {
TTN_EVENT_NONE,
TTN_EVNT_JOIN_COMPLETED,
TTN_EVENT_JOIN_FAILED,
TTN_EVENT_MESSAGE_RECEIVED,
TTN_EVENT_TRANSMISSION_COMPLETED,
TTN_EVENT_TRANSMISSION_FAILED
} ttn_event_t;
/**
* @brief Event message sent from LMIC task to waiting client task
*/
typedef struct {
ttn_event_t event;
uint8_t port;
const uint8_t* message;
size_t message_size;
} ttn_lmic_event_t;
static QueueHandle_t lmic_event_queue;
static ttn_message_cb message_callback;
static ttn_waiting_reason_t waiting_reason = TTN_WAITING_NONE;
static ttn_rf_settings_t last_rf_settings[4];
static ttn_rx_tx_window_t current_rx_tx_window;
static bool join_core(void);
static void event_callback(void* user_data, ev_t event);
static void message_received_callback(void *user_data, uint8_t port, const uint8_t *message, size_t message_size);
static void message_transmitted_callback(void *user_data, int success);
static void save_rf_settings(ttn_rf_settings_t* rf_settings);
static void clear_rf_settings(ttn_rf_settings_t* rf_settings);
void ttn_init(void)
{
#if defined(TTN_IS_DISABLED)
ESP_LOGE(TAG, "TTN is disabled. Configure a frequency plan using 'make menuconfig'");
ASSERT(0);
#endif
message_callback = NULL;
hal_esp32_init_critical_section();
}
void ttn_configure_pins(spi_host_device_t spi_host, uint8_t nss, uint8_t rxtx, uint8_t rst, uint8_t dio0, uint8_t dio1)
{
hal_esp32_configure_pins(spi_host, nss, rxtx, rst, dio0, dio1);
#if LMIC_ENABLE_event_logging
ttn_log_init();
#endif
LMIC_registerEventCb(event_callback, NULL);
LMIC_registerRxMessageCb(message_received_callback, NULL);
os_init_ex(NULL);
ttn_reset();
lmic_event_queue = xQueueCreate(4, sizeof(ttn_lmic_event_t));
ASSERT(lmic_event_queue != NULL);
hal_esp32_start_lmic_task();
}
void ttn_reset(void)
{
hal_esp32_enter_critical_section();
LMIC_reset();
LMIC_setClockError(MAX_CLOCK_ERROR * 4 / 100);
waiting_reason = TTN_WAITING_NONE;
hal_esp32_leave_critical_section();
}
void ttn_shutdown(void)
{
hal_esp32_enter_critical_section();
LMIC_shutdown();
hal_esp32_stop_lmic_task();
waiting_reason = TTN_WAITING_NONE;
hal_esp32_leave_critical_section();
}
void ttn_startup(void)
{
hal_esp32_enter_critical_section();
LMIC_reset();
hal_esp32_start_lmic_task();
hal_esp32_leave_critical_section();
}
bool ttn_provision(const char *dev_eui, const char *app_eui, const char *app_key)
{
if (!ttn_provisioning_decode_keys(dev_eui, app_eui, app_key))
return false;
return ttn_provisioning_save_keys();
}
bool ttn_provision_with_mac(const char *app_eui, const char *app_key)
{
if (!ttn_provisioning_from_mac(app_eui, app_key))
return false;
return ttn_provisioning_save_keys();
}
void ttn_start_provisioning_task(void)
{
#if defined(TTN_HAS_AT_COMMANDS)
ttn_provisioning_start_task();
#else
ESP_LOGE(TAG, "AT commands are disabled. Change the configuration using 'make menuconfig'");
ASSERT(0);
esp_restart();
#endif
}
void ttn_wait_for_provisioning(void)
{
#if defined(TTN_HAS_AT_COMMANDS)
if (ttn_is_provisioned())
{
ESP_LOGI(TAG, "Device is already provisioned");
return;
}
while (!ttn_provisioning_have_keys())
vTaskDelay(pdMS_TO_TICKS(1000));
ESP_LOGI(TAG, "Device successfully provisioned");
#else
ESP_LOGE(TAG, "AT commands are disabled. Change the configuration using 'make menuconfig'");
ASSERT(0);
esp_restart();
#endif
}
bool ttn_join(const char *dev_eui, const char *app_eui, const char *app_key)
{
if (!ttn_provisioning_decode_keys(dev_eui, app_eui, app_key))
return false;
return join_core();
}
bool ttn_join_provisioned(void)
{
if (!ttn_provisioning_have_keys())
{
if (!ttn_provisioning_restore_keys(false))
return false;
}
return join_core();
}
bool join_core()
{
if (!ttn_provisioning_have_keys())
{
ESP_LOGW(TAG, "Device EUI, App EUI and/or App key have not been provided");
return false;
}
hal_esp32_enter_critical_section();
xQueueReset(lmic_event_queue);
waiting_reason = TTN_WAITING_FOR_JOIN;
LMIC_startJoining();
hal_esp32_wake_up();
hal_esp32_leave_critical_section();
ttn_lmic_event_t event;
xQueueReceive(lmic_event_queue, &event, portMAX_DELAY);
return event.event == TTN_EVNT_JOIN_COMPLETED;
}
ttn_response_code_t ttn_transmit_message(const uint8_t *payload, size_t length, ttn_port_t port, bool confirm)
{
hal_esp32_enter_critical_section();
if (waiting_reason != TTN_WAITING_NONE || (LMIC.opmode & OP_TXRXPEND) != 0)
{
hal_esp32_leave_critical_section();
return TTN_ERROR_TRANSMISSION_FAILED;
}
waiting_reason = TTN_WAITING_FOR_TRANSMISSION;
LMIC.client.txMessageCb = message_transmitted_callback;
LMIC.client.txMessageUserData = NULL;
LMIC_setTxData2(port, (xref2u1_t)payload, length, confirm);
hal_esp32_wake_up();
hal_esp32_leave_critical_section();
while (true)
{
ttn_lmic_event_t result;
xQueueReceive(lmic_event_queue, &result, portMAX_DELAY);
switch (result.event)
{
case TTN_EVENT_MESSAGE_RECEIVED:
if (message_callback != NULL)
message_callback(result.message, result.message_size, result.port);
break;
case TTN_EVENT_TRANSMISSION_COMPLETED:
return TTN_SUCCESSFUL_TRANSMISSION;
case TTN_EVENT_TRANSMISSION_FAILED:
return TTN_ERROR_TRANSMISSION_FAILED;
default:
ASSERT(0);
}
}
}
void ttn_on_message(ttn_message_cb callback)
{
message_callback = callback;
}
bool ttn_is_provisioned(void)
{
if (ttn_provisioning_have_keys())
return true;
ttn_provisioning_restore_keys(true);
return ttn_provisioning_have_keys();
}
void ttn_set_rssi_cal(int8_t rssi_cal)
{
hal_esp32_set_rssi_cal(rssi_cal);
}
bool ttn_adr_enabled(void)
{
return LMIC.adrEnabled != 0;
}
void ttn_set_adr_nabled(bool enabled)
{
LMIC_setAdrMode(enabled);
}
ttn_rf_settings_t ttn_getrf_settings(ttn_rx_tx_window_t window)
{
int index = ((int)window) & 0x03;
return last_rf_settings[index];
}
ttn_rf_settings_t ttn_tx_settings(void)
{
return last_rf_settings[TTN_WINDOW_TX];
}
ttn_rf_settings_t ttn_rx1_settings(void)
{
return last_rf_settings[TTN_WINDOW_RX1];
}
ttn_rf_settings_t ttn_rx2_settings(void)
{
return last_rf_settings[TTN_WINDOW_RX2];
}
ttn_rx_tx_window_t ttn_rx_tx_window(void)
{
return current_rx_tx_window;
}
int ttn_rssi(void)
{
return LMIC.rssi;
}
// --- Callbacks ---
#if CONFIG_LOG_DEFAULT_LEVEL >= 3 || LMIC_ENABLE_event_logging
static const char *event_names[] = { LMIC_EVENT_NAME_TABLE__INIT };
#endif
// Called by LMIC when an LMIC event (join, join failed, reset etc.) occurs
void event_callback(void* user_data, ev_t event)
{
// update monitoring information
switch(event)
{
case EV_TXSTART:
current_rx_tx_window = TTN_WINDOW_TX;
save_rf_settings(&last_rf_settings[TTN_WINDOW_TX]);
clear_rf_settings(&last_rf_settings[TTN_WINDOW_RX1]);
clear_rf_settings(&last_rf_settings[TTN_WINDOW_RX2]);
break;
case EV_RXSTART:
if (current_rx_tx_window != TTN_WINDOW_RX1)
{
current_rx_tx_window = TTN_WINDOW_RX1;
save_rf_settings(&last_rf_settings[TTN_WINDOW_RX1]);
}
else
{
current_rx_tx_window = TTN_WINDOW_RX2;
save_rf_settings(&last_rf_settings[TTN_WINDOW_RX2]);
}
break;
default:
current_rx_tx_window = TTN_WINDOW_IDLE;
break;
};
#if LMIC_ENABLE_event_logging
ttn_log_event(event, event_names[event], 0);
#elif CONFIG_LOG_DEFAULT_LEVEL >= 3
ESP_LOGI(TAG, "event %s", event_names[event]);
#endif
ttn_event_t ttn_event = TTN_EVENT_NONE;
if (waiting_reason == TTN_WAITING_FOR_JOIN)
{
if (event == EV_JOINED)
{
ttn_event = TTN_EVNT_JOIN_COMPLETED;
}
else if (event == EV_REJOIN_FAILED || event == EV_RESET)
{
ttn_event = TTN_EVENT_JOIN_FAILED;
}
}
if (ttn_event == TTN_EVENT_NONE)
return;
ttn_lmic_event_t result = {
.event = ttn_event
};
waiting_reason = TTN_WAITING_NONE;
xQueueSend(lmic_event_queue, &result, pdMS_TO_TICKS(100));
}
// Called by LMIC when a message has been received
void message_received_callback(void *user_data, uint8_t port, const uint8_t *message, size_t message_size)
{
ttn_lmic_event_t result = {
.event = TTN_EVENT_MESSAGE_RECEIVED,
.port = port,
.message = message,
.message_size = message_size
};
xQueueSend(lmic_event_queue, &result, pdMS_TO_TICKS(100));
}
// Called by LMIC when a message has been transmitted (or the transmission failed)
void message_transmitted_callback(void *user_data, int success)
{
waiting_reason = TTN_WAITING_NONE;
ttn_lmic_event_t result = {
.event = success ? TTN_EVENT_TRANSMISSION_COMPLETED : TTN_EVENT_TRANSMISSION_FAILED
};
xQueueSend(lmic_event_queue, &result, pdMS_TO_TICKS(100));
}
// --- Helpers
void save_rf_settings(ttn_rf_settings_t* rf_settings)
{
rf_settings->spreading_factor = (ttn_spreading_factor_t)(getSf(LMIC.rps) + 1);
rf_settings->bandwidth = (ttn_bandwidth_t)(getBw(LMIC.rps) + 1);
rf_settings->frequency = LMIC.freq;
}
void clear_rf_settings(ttn_rf_settings_t* rf_settings)
{
memset(rf_settings, 0, sizeof(*rf_settings));
}