Convert hal_esp32 to C

This commit is contained in:
Manuel Bleichenbacher 2021-07-25 20:03:16 +02:00
parent 973a7c41c8
commit 8e2886db27
6 changed files with 587 additions and 627 deletions

View File

@ -6,6 +6,10 @@
"oslmic.h": "c",
"hal_esp32.h": "c",
"esp_log.h": "c",
"nvs_flash.h": "c"
"nvs_flash.h": "c",
"__config": "c",
"__nullptr": "c",
"stdint.h": "c",
"*.ipp": "c"
}
}

View File

@ -82,7 +82,7 @@ TheThingsNetwork::TheThingsNetwork()
ASSERT(ttnInstance == nullptr);
ttnInstance = this;
ttn_hal.initCriticalSection();
hal_esp32_init_critical_section();
}
TheThingsNetwork::~TheThingsNetwork()
@ -92,7 +92,7 @@ TheThingsNetwork::~TheThingsNetwork()
void TheThingsNetwork::configurePins(spi_host_device_t spi_host, uint8_t nss, uint8_t rxtx, uint8_t rst, uint8_t dio0, uint8_t dio1)
{
ttn_hal.configurePins(spi_host, nss, rxtx, rst, dio0, dio1);
hal_esp32_configure_pins(spi_host, nss, rxtx, rst, dio0, dio1);
#if LMIC_ENABLE_event_logging
logging = TTNLogging::initInstance();
@ -106,33 +106,33 @@ void TheThingsNetwork::configurePins(spi_host_device_t spi_host, uint8_t nss, ui
lmicEventQueue = xQueueCreate(4, sizeof(TTNLmicEvent));
ASSERT(lmicEventQueue != nullptr);
ttn_hal.startLMICTask();
hal_esp32_start_lmic_task();
}
void TheThingsNetwork::reset()
{
ttn_hal.enterCriticalSection();
hal_esp32_enter_critical_section();
LMIC_reset();
LMIC_setClockError(MAX_CLOCK_ERROR * 4 / 100);
waitingReason = eWaitingNone;
ttn_hal.leaveCriticalSection();
hal_esp32_leave_critical_section();
}
void TheThingsNetwork::shutdown()
{
ttn_hal.enterCriticalSection();
hal_esp32_enter_critical_section();
LMIC_shutdown();
ttn_hal.stopLMICTask();
hal_esp32_stop_lmic_task();
waitingReason = eWaitingNone;
ttn_hal.leaveCriticalSection();
hal_esp32_leave_critical_section();
}
void TheThingsNetwork::startup()
{
ttn_hal.enterCriticalSection();
hal_esp32_enter_critical_section();
LMIC_reset();
ttn_hal.startLMICTask();
ttn_hal.leaveCriticalSection();
hal_esp32_start_lmic_task();
hal_esp32_leave_critical_section();
}
bool TheThingsNetwork::provision(const char *devEui, const char *appEui, const char *appKey)
@ -210,12 +210,12 @@ bool TheThingsNetwork::joinCore()
return false;
}
ttn_hal.enterCriticalSection();
hal_esp32_enter_critical_section();
xQueueReset(lmicEventQueue);
waitingReason = eWaitingForJoin;
LMIC_startJoining();
ttn_hal.wakeUp();
ttn_hal.leaveCriticalSection();
hal_esp32_wake_up();
hal_esp32_leave_critical_section();
TTNLmicEvent event;
xQueueReceive(lmicEventQueue, &event, portMAX_DELAY);
@ -224,10 +224,10 @@ bool TheThingsNetwork::joinCore()
TTNResponseCode TheThingsNetwork::transmitMessage(const uint8_t *payload, size_t length, port_t port, bool confirm)
{
ttn_hal.enterCriticalSection();
hal_esp32_enter_critical_section();
if (waitingReason != eWaitingNone || (LMIC.opmode & OP_TXRXPEND) != 0)
{
ttn_hal.leaveCriticalSection();
hal_esp32_leave_critical_section();
return kTTNErrorTransmissionFailed;
}
@ -235,8 +235,8 @@ TTNResponseCode TheThingsNetwork::transmitMessage(const uint8_t *payload, size_t
LMIC.client.txMessageCb = messageTransmittedCallback;
LMIC.client.txMessageUserData = nullptr;
LMIC_setTxData2(port, (xref2u1_t)payload, length, confirm);
ttn_hal.wakeUp();
ttn_hal.leaveCriticalSection();
hal_esp32_wake_up();
hal_esp32_leave_critical_section();
while (true)
{
@ -280,7 +280,7 @@ bool TheThingsNetwork::isProvisioned()
void TheThingsNetwork::setRSSICal(int8_t rssiCal)
{
ttn_hal.rssiCal = rssiCal;
hal_esp32_set_rssi_cal(rssiCal);
}
bool TheThingsNetwork::adrEnabled()

538
src/hal/hal_esp32.c Executable file
View File

@ -0,0 +1,538 @@
/*******************************************************************************
*
* ttn-esp32 - The Things Network device library for ESP-IDF / SX127x
*
* Copyright (c) 2018-2019 Manuel Bleichenbacher
*
* Licensed under MIT License
* https://opensource.org/licenses/MIT
*
* Hardware abstraction layer to run LMIC on a ESP32 using ESP-IDF.
*******************************************************************************/
#include "hal_esp32.h"
#include "../lmic/lmic.h"
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "driver/gpio.h"
#include "driver/spi_master.h"
#include "driver/timer.h"
#include "esp_timer.h"
#include "esp_log.h"
#define LMIC_UNUSED_PIN 0xff
#define NOTIFY_BIT_DIO 1
#define NOTIFY_BIT_TIMER 2
#define NOTIFY_BIT_WAKEUP 4
#define NOTIFY_BIT_STOP 8
#define TAG "ttn_hal"
typedef enum {
WAIT_KIND_CHECK_IO,
WAIT_KIND_WAIT_FOR_ANY_EVENT,
WAIT_KIND_WAIT_FOR_TIMER
} wait_kind_e;
static void lmic_background_task(void* pvParameter);
static void qio_irq_handler(void* arg);
static void timer_callback(void *arg);
static int64_t os_time_to_esp_time(int64_t esp_now, uint32_t os_time);
static void init_io(void);
static void init_spi(void);
static void init_timer(void);
static void set_next_alarm(int64_t time);
static void arm_timer(int64_t esp_now);
static void disarm_timer(void);
static bool wait(wait_kind_e wait_kind);
static spi_host_device_t spi_host;
static gpio_num_t pin_nss;
static gpio_num_t pin_rx_tx;
static gpio_num_t pin_rst;
static gpio_num_t pin_dio0;
static gpio_num_t pin_dio1;
static int8_t rssi_cal = 10;
static TaskHandle_t lmic_task;
static uint32_t dio_interrupt_time;
static uint8_t dio_num;
static spi_device_handle_t spi_handle;
static spi_transaction_t spi_transaction;
static SemaphoreHandle_t mutex;
static esp_timer_handle_t timer;
static int64_t next_alarm;
static volatile bool run_background_task;
// -----------------------------------------------------------------------------
// I/O
void hal_esp32_configure_pins(spi_host_device_t host, uint8_t nss, uint8_t rxtx, uint8_t rst, uint8_t dio0, uint8_t dio1)
{
spi_host = host;
pin_nss = (gpio_num_t)nss;
pin_rx_tx = (gpio_num_t)rxtx;
pin_rst = (gpio_num_t)rst;
pin_dio0 = (gpio_num_t)dio0;
pin_dio1 = (gpio_num_t)dio1;
// Until the background process has been started, use the current task
// for supporting calls like `hal_waitUntil()`.
lmic_task = xTaskGetCurrentTaskHandle();
}
void IRAM_ATTR qio_irq_handler(void *arg)
{
dio_interrupt_time = hal_ticks();
dio_num = (u1_t)(long)arg;
BaseType_t higher_prio_task_woken = pdFALSE;
xTaskNotifyFromISR(lmic_task, NOTIFY_BIT_DIO, eSetBits, &higher_prio_task_woken);
if (higher_prio_task_woken)
portYIELD_FROM_ISR();
}
void init_io(void)
{
// pin_nss and pin_dio0 and pin_dio1 are required
ASSERT(pin_nss != LMIC_UNUSED_PIN);
ASSERT(pin_dio0 != LMIC_UNUSED_PIN);
ASSERT(pin_dio1 != LMIC_UNUSED_PIN);
gpio_pad_select_gpio(pin_nss);
gpio_set_level(pin_nss, 0);
gpio_set_direction(pin_nss, GPIO_MODE_OUTPUT);
if (pin_rx_tx != LMIC_UNUSED_PIN)
{
gpio_pad_select_gpio(pin_rx_tx);
gpio_set_level(pin_rx_tx, 0);
gpio_set_direction(pin_rx_tx, GPIO_MODE_OUTPUT);
}
if (pin_rst != LMIC_UNUSED_PIN)
{
gpio_pad_select_gpio(pin_rst);
gpio_set_level(pin_rst, 0);
gpio_set_direction(pin_rst, GPIO_MODE_OUTPUT);
}
// DIO pins with interrupt handlers
gpio_pad_select_gpio(pin_dio0);
gpio_set_direction(pin_dio0, GPIO_MODE_INPUT);
gpio_set_intr_type(pin_dio0, GPIO_INTR_POSEDGE);
gpio_pad_select_gpio(pin_dio1);
gpio_set_direction(pin_dio1, GPIO_MODE_INPUT);
gpio_set_intr_type(pin_dio1, GPIO_INTR_POSEDGE);
ESP_LOGI(TAG, "IO initialized");
}
void hal_pin_rxtx(u1_t val)
{
if (pin_rx_tx == LMIC_UNUSED_PIN)
return;
gpio_set_level(pin_rx_tx, val);
}
void hal_pin_rst(u1_t val)
{
if (pin_rst == LMIC_UNUSED_PIN)
return;
if (val == 0 || val == 1)
{
// drive pin
gpio_set_level(pin_rst, val);
gpio_set_direction(pin_rst, GPIO_MODE_OUTPUT);
}
else
{
#if defined(CONFIG_TTN_RESET_STATES_ASSERTED)
// drive up the pin because the hardware is nonstandard
gpio_set_level(pin_rst, 1);
gpio_set_direction(pin_rst, GPIO_MODE_OUTPUT);
#else
// keep pin floating
gpio_set_level(pin_rst, val);
gpio_set_direction(pin_rst, GPIO_MODE_INPUT);
#endif
}
}
s1_t hal_getRssiCal(void)
{
return rssi_cal;
}
ostime_t hal_setModuleActive(bit_t val)
{
return 0;
}
bit_t hal_queryUsingTcxo(void)
{
return false;
}
uint8_t hal_getTxPowerPolicy(u1_t inputPolicy, s1_t requestedPower, u4_t frequency)
{
return LMICHAL_radio_tx_power_policy_paboost;
}
// -----------------------------------------------------------------------------
// SPI
void init_spi(void)
{
// init device
spi_device_interface_config_t spi_config = {
.mode = 1,
.clock_speed_hz = CONFIG_TTN_SPI_FREQ,
.command_bits = 0,
.address_bits = 8,
.spics_io_num = pin_nss,
.queue_size = 1,
.cs_ena_posttrans = 2
};
esp_err_t ret = spi_bus_add_device(spi_host, &spi_config, &spi_handle);
ESP_ERROR_CHECK(ret);
ESP_LOGI(TAG, "SPI initialized");
}
void hal_spi_write(u1_t cmd, const u1_t *buf, size_t len)
{
memset(&spi_transaction, 0, sizeof(spi_transaction));
spi_transaction.addr = cmd;
spi_transaction.length = 8 * len;
spi_transaction.tx_buffer = buf;
esp_err_t err = spi_device_transmit(spi_handle, &spi_transaction);
ESP_ERROR_CHECK(err);
}
void hal_spi_read(u1_t cmd, u1_t *buf, size_t len)
{
memset(buf, 0, len);
memset(&spi_transaction, 0, sizeof(spi_transaction));
spi_transaction.addr = cmd;
spi_transaction.length = 8 * len;
spi_transaction.rxlength = 8 * len;
spi_transaction.tx_buffer = buf;
spi_transaction.rx_buffer = buf;
esp_err_t err = spi_device_transmit(spi_handle, &spi_transaction);
ESP_ERROR_CHECK(err);
}
// -----------------------------------------------------------------------------
// TIME
/*
* LIMIC uses a 32 bit time system (ostime_t) counting ticks. In this
* implementation each tick is 16µs. It will wrap arounnd every 19 hours.
*
* The ESP32 has a 64 bit timer counting microseconds. It will wrap around
* every 584,000 years. So we don't need to bother.
*
* Based on this timer, future callbacks can be scheduled. This is used to
* schedule the next LMIC job.
*/
// Convert LMIC tick time (ostime_t) to ESP absolute time.
// `os_time` is assumed to be somewhere between one hour in the past and
// 18 hours into the future.
int64_t os_time_to_esp_time(int64_t esp_now, uint32_t os_time)
{
int64_t esp_time;
uint32_t os_now = (uint32_t)(esp_now >> 4);
// unsigned difference:
// 0x00000000 - 0xefffffff: future (0 to about 18 hours)
// 0xf0000000 - 0xffffffff: past (about 1 to 0 hours)
uint32_t os_diff = os_time - os_now;
if (os_diff < 0xf0000000)
{
esp_time = esp_now + (((int64_t)os_diff) << 4);
}
else
{
// one's complement instead of two's complement:
// off by 1 µs and ignored
os_diff = ~os_diff;
esp_time = esp_now - (((int64_t)os_diff) << 4);
}
return esp_time;
}
void init_timer(void)
{
esp_timer_create_args_t timer_config = {
.callback = &timer_callback,
.arg = NULL,
.dispatch_method = ESP_TIMER_TASK,
.name = "lmic_job"
};
esp_err_t err = esp_timer_create(&timer_config, &timer);
ESP_ERROR_CHECK(err);
ESP_LOGI(TAG, "Timer initialized");
}
void set_next_alarm(int64_t time)
{
next_alarm = time;
}
void arm_timer(int64_t esp_now)
{
if (next_alarm == 0)
return;
int64_t timeout = next_alarm - esp_timer_get_time();
if (timeout < 0)
timeout = 10;
esp_timer_start_once(timer, timeout);
}
void disarm_timer(void)
{
esp_timer_stop(timer);
}
void timer_callback(void *arg)
{
xTaskNotify(lmic_task, NOTIFY_BIT_TIMER, eSetBits);
}
// Wait for the next external event. Either:
// - scheduled timer due to scheduled job or waiting for a given time
// - wake up event from the client code
// - I/O interrupt (DIO0 or DIO1 pin)
bool wait(wait_kind_e wait_kind)
{
TickType_t ticks_to_wait = wait_kind == WAIT_KIND_CHECK_IO ? 0 : portMAX_DELAY;
while (true)
{
uint32_t bits = ulTaskNotifyTake(pdTRUE, ticks_to_wait);
if (bits == 0)
return false;
if ((bits & NOTIFY_BIT_STOP) != 0)
return false;
if ((bits & NOTIFY_BIT_WAKEUP) != 0)
{
if (wait_kind != WAIT_KIND_WAIT_FOR_TIMER)
{
disarm_timer();
return true;
}
}
else if ((bits & NOTIFY_BIT_TIMER) != 0)
{
disarm_timer();
set_next_alarm(0);
if (wait_kind != WAIT_KIND_CHECK_IO)
return true;
}
else // IO interrupt
{
if (wait_kind != WAIT_KIND_WAIT_FOR_TIMER)
disarm_timer();
hal_esp32_enter_critical_section();
radio_irq_handler_v2(dio_num, dio_interrupt_time);
hal_esp32_leave_critical_section();
if (wait_kind != WAIT_KIND_WAIT_FOR_TIMER)
return true;
}
}
}
// Gets current time in LMIC ticks
u4_t IRAM_ATTR hal_ticks(void)
{
// LMIC tick unit: 16µs
// esp_timer unit: 1µs
return (u4_t)(esp_timer_get_time() >> 4);
}
// Wait until the specified time.
// Called if the LMIC code needs to wait for a precise time.
// All other events are ignored and will be served later.
u4_t hal_waitUntil(u4_t time)
{
int64_t esp_now = esp_timer_get_time();
int64_t esp_time = os_time_to_esp_time(esp_now, time);
set_next_alarm(esp_time);
arm_timer(esp_now);
wait(WAIT_KIND_WAIT_FOR_TIMER);
u4_t os_now = hal_ticks();
u4_t diff = os_now - time;
return diff < 0x80000000U ? diff : 0;
}
// Called by client code to wake up LMIC to do something,
// e.g. send a submitted messages.
void hal_esp32_wake_up(void)
{
xTaskNotify(lmic_task, NOTIFY_BIT_WAKEUP, eSetBits);
}
// Check if the specified time has been reached or almost reached.
// Otherwise, save it as alarm time.
// LMIC calls this function with the scheduled time of the next job
// in the queue. If the job is not due yet, LMIC will go to sleep.
u1_t hal_checkTimer(uint32_t time)
{
int64_t esp_now = esp_timer_get_time();
int64_t esp_time = os_time_to_esp_time(esp_now, time);
int64_t diff = esp_time - esp_now;
if (diff < 100)
return 1; // timer has expired or will expire very soon
set_next_alarm(esp_time);
return 0;
}
// Go to sleep until next event.
// Called when LMIC is not busy and not job is due to be executed.
void hal_sleep(void)
{
if (wait(WAIT_KIND_CHECK_IO))
return;
arm_timer(esp_timer_get_time());
wait(WAIT_KIND_WAIT_FOR_ANY_EVENT);
}
// -----------------------------------------------------------------------------
// IRQ
void hal_disableIRQs(void)
{
// nothing to do as interrupt handlers post message to queue
// and don't access any shared data structures
}
void hal_enableIRQs(void)
{
// nothing to do as interrupt handlers post message to queue
// and don't access any shared data structures
}
void hal_processPendingIRQs(void)
{
// nothing to do as interrupt handlers post message to queue
// and don't access any shared data structures
}
// -----------------------------------------------------------------------------
// Synchronization between application code and background task
void hal_esp32_init_critical_section(void)
{
mutex = xSemaphoreCreateRecursiveMutex();
}
void hal_esp32_enter_critical_section(void)
{
xSemaphoreTakeRecursive(mutex, portMAX_DELAY);
}
void hal_esp32_leave_critical_section(void)
{
xSemaphoreGiveRecursive(mutex);
}
// -----------------------------------------------------------------------------
void lmic_background_task(void* pvParameter)
{
while (run_background_task)
os_runloop_once();
vTaskDelete(NULL);
}
void hal_init_ex(const void *pContext)
{
// configure radio I/O and interrupt handler
init_io();
// configure radio SPI
init_spi();
// configure timer and alarm callback
init_timer();
}
void hal_esp32_start_lmic_task(void)
{
run_background_task = true;
xTaskCreate(lmic_background_task, "ttn_lmic", 1024 * 4, NULL, CONFIG_TTN_BG_TASK_PRIO, &lmic_task);
// enable interrupts
gpio_isr_handler_add(pin_dio0, qio_irq_handler, (void *)0);
gpio_isr_handler_add(pin_dio1, qio_irq_handler, (void *)1);
}
void hal_esp32_stop_lmic_task(void)
{
run_background_task = false;
gpio_isr_handler_remove(pin_dio0);
gpio_isr_handler_remove(pin_dio1);
disarm_timer();
xTaskNotify(lmic_task, NOTIFY_BIT_STOP, eSetBits);
}
// -----------------------------------------------------------------------------
// Fatal failure
static hal_failure_handler_t* custom_hal_failure_handler = NULL;
void hal_set_failure_handler(const hal_failure_handler_t* const handler)
{
custom_hal_failure_handler = handler;
}
void hal_failed(const char *file, u2_t line)
{
if (custom_hal_failure_handler != NULL)
(*custom_hal_failure_handler)(file, line);
ESP_LOGE(TAG, "LMIC failed and stopped: %s:%d", file, line);
// go to sleep forever
while (true)
{
vTaskDelay(portMAX_DELAY);
}
}
// -----------------------------------------------------------------------------
// RSSI
void hal_esp32_set_rssi_cal(int8_t cal)
{
rssi_cal = cal;
}

View File

@ -1,529 +0,0 @@
/*******************************************************************************
*
* ttn-esp32 - The Things Network device library for ESP-IDF / SX127x
*
* Copyright (c) 2018-2019 Manuel Bleichenbacher
*
* Licensed under MIT License
* https://opensource.org/licenses/MIT
*
* Hardware abstraction layer to run LMIC on a ESP32 using ESP-IDF.
*******************************************************************************/
#include "../lmic/lmic.h"
#include "../hal/hal_esp32.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "driver/spi_master.h"
#include "driver/timer.h"
#include "esp_log.h"
#define LMIC_UNUSED_PIN 0xff
#define NOTIFY_BIT_DIO 1
#define NOTIFY_BIT_TIMER 2
#define NOTIFY_BIT_WAKEUP 4
#define NOTIFY_BIT_STOP 8
static const char* const TAG = "ttn_hal";
HAL_ESP32 ttn_hal;
TaskHandle_t HAL_ESP32::lmicTask = nullptr;
uint32_t HAL_ESP32::dioInterruptTime = 0;
uint8_t HAL_ESP32::dioNum = 0;
// -----------------------------------------------------------------------------
// Constructor
HAL_ESP32::HAL_ESP32()
: rssiCal(10), nextAlarm(0)
{
}
// -----------------------------------------------------------------------------
// I/O
void HAL_ESP32::configurePins(spi_host_device_t spi_host, uint8_t nss, uint8_t rxtx, uint8_t rst, uint8_t dio0, uint8_t dio1)
{
spiHost = spi_host;
pinNSS = (gpio_num_t)nss;
pinRxTx = (gpio_num_t)rxtx;
pinRst = (gpio_num_t)rst;
pinDIO0 = (gpio_num_t)dio0;
pinDIO1 = (gpio_num_t)dio1;
// Until the background process has been started, use the current task
// for supporting calls like `hal_waitUntil()`.
lmicTask = xTaskGetCurrentTaskHandle();
}
void IRAM_ATTR HAL_ESP32::dioIrqHandler(void *arg)
{
dioInterruptTime = hal_ticks();
dioNum = (u1_t)(long)arg;
BaseType_t higherPrioTaskWoken = pdFALSE;
xTaskNotifyFromISR(lmicTask, NOTIFY_BIT_DIO, eSetBits, &higherPrioTaskWoken);
if (higherPrioTaskWoken)
portYIELD_FROM_ISR();
}
void HAL_ESP32::ioInit()
{
// pinNSS and pinDIO0 and pinDIO1 are required
ASSERT(pinNSS != LMIC_UNUSED_PIN);
ASSERT(pinDIO0 != LMIC_UNUSED_PIN);
ASSERT(pinDIO1 != LMIC_UNUSED_PIN);
gpio_pad_select_gpio(pinNSS);
gpio_set_level(pinNSS, 0);
gpio_set_direction(pinNSS, GPIO_MODE_OUTPUT);
if (pinRxTx != LMIC_UNUSED_PIN)
{
gpio_pad_select_gpio(pinRxTx);
gpio_set_level(pinRxTx, 0);
gpio_set_direction(pinRxTx, GPIO_MODE_OUTPUT);
}
if (pinRst != LMIC_UNUSED_PIN)
{
gpio_pad_select_gpio(pinRst);
gpio_set_level(pinRst, 0);
gpio_set_direction(pinRst, GPIO_MODE_OUTPUT);
}
// DIO pins with interrupt handlers
gpio_pad_select_gpio(pinDIO0);
gpio_set_direction(pinDIO0, GPIO_MODE_INPUT);
gpio_set_intr_type(pinDIO0, GPIO_INTR_POSEDGE);
gpio_pad_select_gpio(pinDIO1);
gpio_set_direction(pinDIO1, GPIO_MODE_INPUT);
gpio_set_intr_type(pinDIO1, GPIO_INTR_POSEDGE);
ESP_LOGI(TAG, "IO initialized");
}
void hal_pin_rxtx(u1_t val)
{
if (ttn_hal.pinRxTx == LMIC_UNUSED_PIN)
return;
gpio_set_level(ttn_hal.pinRxTx, val);
}
void hal_pin_rst(u1_t val)
{
if (ttn_hal.pinRst == LMIC_UNUSED_PIN)
return;
if (val == 0 || val == 1)
{
// drive pin
gpio_set_level(ttn_hal.pinRst, val);
gpio_set_direction(ttn_hal.pinRst, GPIO_MODE_OUTPUT);
}
else
{
#if defined(CONFIG_TTN_RESET_STATES_ASSERTED)
// drive up the pin because the hardware is nonstandard
gpio_set_level(ttn_hal.pinRst, 1);
gpio_set_direction(ttn_hal.pinRst, GPIO_MODE_OUTPUT);
#else
// keep pin floating
gpio_set_level(ttn_hal.pinRst, val);
gpio_set_direction(ttn_hal.pinRst, GPIO_MODE_INPUT);
#endif
}
}
s1_t hal_getRssiCal (void)
{
return ttn_hal.rssiCal;
}
ostime_t hal_setModuleActive (bit_t val)
{
return 0;
}
bit_t hal_queryUsingTcxo(void)
{
return false;
}
uint8_t hal_getTxPowerPolicy(u1_t inputPolicy, s1_t requestedPower, u4_t frequency)
{
return LMICHAL_radio_tx_power_policy_paboost;
}
// -----------------------------------------------------------------------------
// SPI
void HAL_ESP32::spiInit()
{
// init device
spi_device_interface_config_t spiConfig;
memset(&spiConfig, 0, sizeof(spiConfig));
spiConfig.mode = 1;
spiConfig.clock_speed_hz = CONFIG_TTN_SPI_FREQ;
spiConfig.command_bits = 0;
spiConfig.address_bits = 8;
spiConfig.spics_io_num = pinNSS;
spiConfig.queue_size = 1;
spiConfig.cs_ena_posttrans = 2;
esp_err_t ret = spi_bus_add_device(spiHost, &spiConfig, &spiHandle);
ESP_ERROR_CHECK(ret);
ESP_LOGI(TAG, "SPI initialized");
}
void hal_spi_write(u1_t cmd, const u1_t *buf, size_t len)
{
ttn_hal.spiWrite(cmd, buf, len);
}
void HAL_ESP32::spiWrite(uint8_t cmd, const uint8_t *buf, size_t len)
{
memset(&spiTransaction, 0, sizeof(spiTransaction));
spiTransaction.addr = cmd;
spiTransaction.length = 8 * len;
spiTransaction.tx_buffer = buf;
esp_err_t err = spi_device_transmit(spiHandle, &spiTransaction);
ESP_ERROR_CHECK(err);
}
void hal_spi_read(u1_t cmd, u1_t *buf, size_t len)
{
ttn_hal.spiRead(cmd, buf, len);
}
void HAL_ESP32::spiRead(uint8_t cmd, uint8_t *buf, size_t len)
{
memset(buf, 0, len);
memset(&spiTransaction, 0, sizeof(spiTransaction));
spiTransaction.addr = cmd;
spiTransaction.length = 8 * len;
spiTransaction.rxlength = 8 * len;
spiTransaction.tx_buffer = buf;
spiTransaction.rx_buffer = buf;
esp_err_t err = spi_device_transmit(spiHandle, &spiTransaction);
ESP_ERROR_CHECK(err);
}
// -----------------------------------------------------------------------------
// TIME
/*
* LIMIC uses a 32 bit time system (ostime_t) counting ticks. In this
* implementation each tick is 16µs. It will wrap arounnd every 19 hours.
*
* The ESP32 has a 64 bit timer counting microseconds. It will wrap around
* every 584,000 years. So we don't need to bother.
*
* Based on this timer, future callbacks can be scheduled. This is used to
* schedule the next LMIC job.
*/
// Convert LMIC tick time (ostime_t) to ESP absolute time.
// `osTime` is assumed to be somewhere between one hour in the past and
// 18 hours into the future.
int64_t HAL_ESP32::osTimeToEspTime(int64_t espNow, uint32_t osTime)
{
int64_t espTime;
uint32_t osNow = (uint32_t)(espNow >> 4);
// unsigned difference:
// 0x00000000 - 0xefffffff: future (0 to about 18 hours)
// 0xf0000000 - 0xffffffff: past (about 1 to 0 hours)
uint32_t osDiff = osTime - osNow;
if (osDiff < 0xf0000000)
{
espTime = espNow + (((int64_t)osDiff) << 4);
}
else
{
// one's complement instead of two's complement:
// off by 1 µs and ignored
osDiff = ~osDiff;
espTime = espNow - (((int64_t)osDiff) << 4);
}
return espTime;
}
void HAL_ESP32::timerInit()
{
esp_timer_create_args_t timerConfig = {
.callback = &timerCallback,
.arg = nullptr,
.dispatch_method = ESP_TIMER_TASK,
.name = "lmic_job"
};
esp_err_t err = esp_timer_create(&timerConfig, &timer);
ESP_ERROR_CHECK(err);
ESP_LOGI(TAG, "Timer initialized");
}
void HAL_ESP32::setNextAlarm(int64_t time)
{
nextAlarm = time;
}
void HAL_ESP32::armTimer(int64_t espNow)
{
if (nextAlarm == 0)
return;
int64_t timeout = nextAlarm - esp_timer_get_time();
if (timeout < 0)
timeout = 10;
esp_timer_start_once(timer, timeout);
}
void HAL_ESP32::disarmTimer()
{
esp_timer_stop(timer);
}
void HAL_ESP32::timerCallback(void *arg)
{
xTaskNotify(lmicTask, NOTIFY_BIT_TIMER, eSetBits);
}
// Wait for the next external event. Either:
// - scheduled timer due to scheduled job or waiting for a given time
// - wake up event from the client code
// - I/O interrupt (DIO0 or DIO1 pin)
bool HAL_ESP32::wait(WaitKind waitKind)
{
TickType_t ticksToWait = waitKind == CHECK_IO ? 0 : portMAX_DELAY;
while (true)
{
uint32_t bits = ulTaskNotifyTake(pdTRUE, ticksToWait);
if (bits == 0)
return false;
if ((bits & NOTIFY_BIT_STOP) != 0)
return false;
if ((bits & NOTIFY_BIT_WAKEUP) != 0)
{
if (waitKind != WAIT_FOR_TIMER)
{
disarmTimer();
return true;
}
}
else if ((bits & NOTIFY_BIT_TIMER) != 0)
{
disarmTimer();
setNextAlarm(0);
if (waitKind != CHECK_IO)
return true;
}
else // IO interrupt
{
if (waitKind != WAIT_FOR_TIMER)
disarmTimer();
enterCriticalSection();
radio_irq_handler_v2(dioNum, dioInterruptTime);
leaveCriticalSection();
if (waitKind != WAIT_FOR_TIMER)
return true;
}
}
}
// Gets current time in LMIC ticks
u4_t IRAM_ATTR hal_ticks()
{
// LMIC tick unit: 16µs
// esp_timer unit: 1µs
return (u4_t)(esp_timer_get_time() >> 4);
}
// Wait until the specified time.
// Called if the LMIC code needs to wait for a precise time.
// All other events are ignored and will be served later.
u4_t hal_waitUntil(u4_t time)
{
return ttn_hal.waitUntil(time);
}
uint32_t HAL_ESP32::waitUntil(uint32_t osTime)
{
int64_t espNow = esp_timer_get_time();
int64_t espTime = osTimeToEspTime(espNow, osTime);
setNextAlarm(espTime);
armTimer(espNow);
wait(WAIT_FOR_TIMER);
u4_t osNow = hal_ticks();
u4_t diff = osNow - osTime;
return diff < 0x80000000U ? diff : 0;
}
// Called by client code to wake up LMIC to do something,
// e.g. send a submitted messages.
void HAL_ESP32::wakeUp()
{
xTaskNotify(lmicTask, NOTIFY_BIT_WAKEUP, eSetBits);
}
// Check if the specified time has been reached or almost reached.
// Otherwise, save it as alarm time.
// LMIC calls this function with the scheduled time of the next job
// in the queue. If the job is not due yet, LMIC will go to sleep.
u1_t hal_checkTimer(uint32_t time)
{
return ttn_hal.checkTimer(time);
}
uint8_t HAL_ESP32::checkTimer(u4_t osTime)
{
int64_t espNow = esp_timer_get_time();
int64_t espTime = osTimeToEspTime(espNow, osTime);
int64_t diff = espTime - espNow;
if (diff < 100)
return 1; // timer has expired or will expire very soon
setNextAlarm(espTime);
return 0;
}
// Go to sleep until next event.
// Called when LMIC is not busy and not job is due to be executed.
void hal_sleep()
{
ttn_hal.sleep();
}
void HAL_ESP32::sleep()
{
if (wait(CHECK_IO))
return;
armTimer(esp_timer_get_time());
wait(WAIT_FOR_ANY_EVENT);
}
// -----------------------------------------------------------------------------
// IRQ
void hal_disableIRQs()
{
// nothing to do as interrupt handlers post message to queue
// and don't access any shared data structures
}
void hal_enableIRQs()
{
// nothing to do as interrupt handlers post message to queue
// and don't access any shared data structures
}
void hal_processPendingIRQs()
{
// nothing to do as interrupt handlers post message to queue
// and don't access any shared data structures
}
// -----------------------------------------------------------------------------
// Synchronization between application code and background task
void HAL_ESP32::initCriticalSection()
{
mutex = xSemaphoreCreateRecursiveMutex();
}
void HAL_ESP32::enterCriticalSection()
{
xSemaphoreTakeRecursive(mutex, portMAX_DELAY);
}
void HAL_ESP32::leaveCriticalSection()
{
xSemaphoreGiveRecursive(mutex);
}
// -----------------------------------------------------------------------------
void HAL_ESP32::lmicBackgroundTask(void* pvParameter)
{
HAL_ESP32* instance = (HAL_ESP32*)pvParameter;
while (instance->runBackgroundTask)
os_runloop_once();
vTaskDelete(nullptr);
}
void hal_init_ex(const void *pContext)
{
ttn_hal.init();
}
void HAL_ESP32::init()
{
// configure radio I/O and interrupt handler
ioInit();
// configure radio SPI
spiInit();
// configure timer and alarm callback
timerInit();
}
void HAL_ESP32::startLMICTask()
{
runBackgroundTask = true;
xTaskCreate(lmicBackgroundTask, "ttn_lmic", 1024 * 4, this, CONFIG_TTN_BG_TASK_PRIO, &lmicTask);
// enable interrupts
gpio_isr_handler_add(pinDIO0, dioIrqHandler, (void *)0);
gpio_isr_handler_add(pinDIO1, dioIrqHandler, (void *)1);
}
void HAL_ESP32::stopLMICTask()
{
runBackgroundTask = false;
gpio_isr_handler_remove(pinDIO0);
gpio_isr_handler_remove(pinDIO1);
disarmTimer();
xTaskNotify(lmicTask, NOTIFY_BIT_STOP, eSetBits);
}
// -----------------------------------------------------------------------------
// Fatal failure
static hal_failure_handler_t* custom_hal_failure_handler = nullptr;
void hal_set_failure_handler(const hal_failure_handler_t* const handler)
{
custom_hal_failure_handler = handler;
}
void hal_failed(const char *file, u2_t line)
{
if (custom_hal_failure_handler != nullptr)
(*custom_hal_failure_handler)(file, line);
ESP_LOGE(TAG, "LMIC failed and stopped: %s:%d", file, line);
// go to sleep forever
while (true)
{
vTaskDelay(portMAX_DELAY);
}
}

View File

@ -2,7 +2,7 @@
*
* ttn-esp32 - The Things Network device library for ESP-IDF / SX127x
*
* Copyright (c) 2018-2019 Manuel Bleichenbacher
* Copyright (c) 2018-2021 Manuel Bleichenbacher
*
* Licensed under MIT License
* https://opensource.org/licenses/MIT
@ -10,85 +10,33 @@
* Hardware abstraction layer to run LMIC on a ESP32 using ESP-IDF.
*******************************************************************************/
#ifndef _hal_esp32_h_
#define _hal_esp32_h_
#ifndef HAL_ESP32_H
#define HAL_ESP32_H
#include <stdint.h>
#include <freertos/FreeRTOS.h>
#include <freertos/queue.h>
#include <freertos/task.h>
#include <freertos/semphr.h>
#include <driver/gpio.h>
#include <driver/spi_master.h>
#include <esp_timer.h>
#include "freertos/FreeRTOS.h"
#include "driver/spi_master.h"
enum WaitKind {
CHECK_IO,
WAIT_FOR_ANY_EVENT,
WAIT_FOR_TIMER
};
#ifdef __cplusplus
extern "C" {
#endif
void hal_esp32_configure_pins(spi_host_device_t spi_host, uint8_t nss, uint8_t rxtx, uint8_t rst, uint8_t dio0, uint8_t dio1);
void hal_esp32_start_lmic_task(void);
void hal_esp32_stop_lmic_task(void);
class HAL_ESP32
{
public:
HAL_ESP32();
void hal_esp32_wake_up(void);
void hal_esp32_init_critical_section(void);
void hal_esp32_enter_critical_section(void);
void hal_esp32_leave_critical_section(void);
void configurePins(spi_host_device_t spi_host, uint8_t nss, uint8_t rxtx, uint8_t rst, uint8_t dio0, uint8_t dio1);
void init();
void startLMICTask();
void stopLMICTask();
void wakeUp();
void initCriticalSection();
void enterCriticalSection();
void leaveCriticalSection();
void spiWrite(uint8_t cmd, const uint8_t *buf, size_t len);
void spiRead(uint8_t cmd, uint8_t *buf, size_t len);
uint8_t checkTimer(uint32_t osTime);
void sleep();
uint32_t waitUntil(uint32_t osTime);
spi_host_device_t spiHost;
gpio_num_t pinNSS;
gpio_num_t pinRxTx;
gpio_num_t pinRst;
gpio_num_t pinDIO0;
gpio_num_t pinDIO1;
int8_t rssiCal;
private:
static void lmicBackgroundTask(void* pvParameter);
static void dioIrqHandler(void* arg);
static void timerCallback(void *arg);
static int64_t osTimeToEspTime(int64_t espNow, uint32_t osTime);
void ioInit();
void spiInit();
void timerInit();
void setNextAlarm(int64_t time);
void armTimer(int64_t espNow);
void disarmTimer();
bool wait(WaitKind waitKind);
static TaskHandle_t lmicTask;
static uint32_t dioInterruptTime;
static uint8_t dioNum;
spi_device_handle_t spiHandle;
spi_transaction_t spiTransaction;
SemaphoreHandle_t mutex;
esp_timer_handle_t timer;
int64_t nextAlarm;
volatile bool runBackgroundTask;
};
extern HAL_ESP32 ttn_hal;
void hal_esp32_set_rssi_cal(int8_t rssi_cal);
#endif // _hal_esp32_h_
#ifdef __cplusplus
}
#endif
#endif // HAL_ESP32_H

View File

@ -18,7 +18,7 @@
#include "esp_system.h"
#include "nvs_flash.h"
#include "lmic/lmic.h"
//#include "hal/hal_esp32.h"
#include "hal/hal_esp32.h"
#if defined(TTN_HAS_AT_COMMANDS)
#define UART_NUM CONFIG_TTN_PROVISION_UART_NUM
@ -305,10 +305,9 @@ void process_line(void)
if (reset_needed)
{
// TODO
// ttn_hal.enterCriticalSection();
hal_esp32_enter_critical_section();
LMIC_reset();
// ttn_hal.leaveCriticalSection();
hal_esp32_leave_critical_section();
LMIC.client.eventCb(LMIC.client.eventUserData, EV_RESET);
}