structure libary & code cleanup

This commit is contained in:
Hendrik Schutter 2020-11-03 23:53:19 +01:00
parent 93f477f55b
commit ec5f642e81
8 changed files with 395 additions and 279 deletions

View File

@ -1,10 +1,10 @@
# ESP32-WROVER-KIT-LCD-DRIVER
LCD Driver for ST7789V used ESP32-WROVER-KIT V4.1
LCD Driver for ST7789V/ILI9341 used ESP32-WROVER-KIT V4.1
## WIP
Using parts from:
https://github.com/Everlers/demo_esp_lcd_st7789v
https://github.com/espressif/esp-idf/blob/master/examples/peripherals/spi_master/lcd
https://github.com/espressif/esp-idf/blob/master/examples/peripherals/spi_master/lcd

16
main/.vscode/c_cpp_properties.json vendored Normal file
View File

@ -0,0 +1,16 @@
{
"configurations": [
{
"name": "Linux",
"includePath": [
"${workspaceFolder}/**"
],
"defines": [],
"compilerPath": "/usr/bin/clang",
"cStandard": "c11",
"cppStandard": "c++14",
"intelliSenseMode": "clang-x64"
}
],
"version": 4
}

View File

@ -1,6 +1,6 @@
/*! @file Driver.c
@brief
@brief write the Framebuffer
@author Hendrik Schutter
@version V1.0
@date 03.11.2020
@ -10,6 +10,20 @@
#include "Driver.h"
spi_device_handle_t spi; //SPI
uint16_t *lines[2];
int16_t sending_line=-1;
int16_t calc_line=0;
uint32_t vDriver_GetId(void);
static esp_err_t iDriver_sendLineFinish(void);
void vDriver_spiPreTransferCallback(spi_transaction_t *t);
esp_err_t iDriver_sendCmd(const uint8_t u8Cmd);
static esp_err_t iDriver_sendLines(uint16_t u16Ypos, uint16_t *pu16Linedata);
esp_err_t iDriver_SendData(const uint8_t *pu8Data, uint16_t u16Len);
void vDriver_getFramenufferPerLine(uint16_t *pu16Dest, uint16_t u16Line, uint16_t u16Linect, uint16_t ***pu16Framebuffer);
//Place data into DRAM. Constant data gets placed into DROM by default, which is not accessible by DMA.
DRAM_ATTR static const lcd_init_cmd_t st_init_cmds[]= {
/* Memory Data Access Control, MX=MV=1, MY=ML=MH=0, RGB=0 */
@ -105,75 +119,46 @@ DRAM_ATTR static const lcd_init_cmd_t ili_init_cmds[]= {
{0, {0}, 0xff},
};
/* Send a command to the LCD. Uses spi_device_polling_transmit, which waits
* until the transfer is complete.
*
* Since command transactions are usually small, they are handled in polling
* mode for higher speed. The overhead of interrupt transactions is more than
* just waiting for the transaction to complete.
/**
* @fn esp_err_t vDriver_init(void)
* @brief Initialize the driver
* @param void
* @return esp error code
* @author Hendrik Schutter
* @date 3.11.2020
*/
void vDriver_cmd(spi_device_handle_t spi, const uint8_t cmd)
esp_err_t vDriver_init(void)
{
esp_err_t ret;
spi_transaction_t t;
memset(&t, 0, sizeof(t)); //Zero out the transaction
t.length=8; //Command is 8 bits
t.tx_buffer=&cmd; //The data is the cmd itself
t.user=(void*)0; //D/C needs to be set to 0
ret=spi_device_polling_transmit(spi, &t); //Transmit!
assert(ret==ESP_OK); //Should have had no issues.
}
esp_err_t ret; //store esp error code
/* Send data to the LCD. Uses spi_device_polling_transmit, which waits until the
* transfer is complete.
*
* Since data transactions are usually small, they are handled in polling
* mode for higher speed. The overhead of interrupt transactions is more than
* just waiting for the transaction to complete.
*/
void vDriver_data(spi_device_handle_t spi, const uint8_t *data, int len)
{
esp_err_t ret;
spi_transaction_t t;
if (len==0) return; //no need to send anything
memset(&t, 0, sizeof(t)); //Zero out the transaction
t.length=len*8; //Len is in bytes, transaction length is in bits.
t.tx_buffer=data; //Data
t.user=(void*)1; //D/C needs to be set to 1
ret=spi_device_polling_transmit(spi, &t); //Transmit!
assert(ret==ESP_OK); //Should have had no issues.
}
spi_bus_config_t buscfg= {
.miso_io_num=PIN_NUM_MISO,
.mosi_io_num=PIN_NUM_MOSI,
.sclk_io_num=PIN_NUM_CLK,
.quadwp_io_num=-1,
.quadhd_io_num=-1,
.max_transfer_sz=PARALLEL_LINES*320*2+8
};
//This function is called (in irq context!) just before a transmission starts. It will
//set the D/C line to the value indicated in the user field.
void vDriver_spi_pre_transfer_callback(spi_transaction_t *t)
{
int dc=(int)t->user;
gpio_set_level(PIN_NUM_DC, dc);
}
spi_device_interface_config_t devcfg= {
#ifdef CONFIG_LCD_OVERCLOCK
.clock_speed_hz=26*1000*1000, //Clock out at 26 MHz
#else
.clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
#endif
.mode=0, //SPI mode 0
.spics_io_num=PIN_NUM_CS, //CS pin
.queue_size=7, //We want to be able to queue 7 transactions at a time
.pre_cb=vDriver_spiPreTransferCallback, //Specify pre-transfer callback to handle D/C line
};
uint32_t vDriver_get_id(spi_device_handle_t spi)
{
//get_id cmd
vDriver_cmd(spi, 0x04);
//Initialize the SPI bus
ret=spi_bus_initialize(LCD_HOST, &buscfg, DMA_CHAN);
ESP_ERROR_CHECK(ret);
//Attach the LCD to the SPI bus
ret=spi_bus_add_device(LCD_HOST, &devcfg, &spi);
ESP_ERROR_CHECK(ret);
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length=8*3;
t.flags = SPI_TRANS_USE_RXDATA;
t.user = (void*)1;
esp_err_t ret = spi_device_polling_transmit(spi, &t);
assert( ret == ESP_OK );
return *(uint32_t*)t.rx_data;
}
//Initialize the display
void vDriver_init(spi_device_handle_t spi)
{
int cmd=0;
const lcd_init_cmd_t* lcd_init_cmds;
@ -189,7 +174,7 @@ void vDriver_init(spi_device_handle_t spi)
vTaskDelay(100 / portTICK_RATE_MS);
//detect LCD type
uint32_t lcd_id = vDriver_get_id(spi);
uint32_t lcd_id = vDriver_GetId();
int lcd_detected_type = 0;
int lcd_type;
@ -223,14 +208,261 @@ void vDriver_init(spi_device_handle_t spi)
//Send all the commands
while (lcd_init_cmds[cmd].databytes!=0xff) {
vDriver_cmd(spi, lcd_init_cmds[cmd].cmd);
vDriver_data(spi, lcd_init_cmds[cmd].data, lcd_init_cmds[cmd].databytes&0x1F);
ret = iDriver_sendCmd(lcd_init_cmds[cmd].cmd);
assert(ret==ESP_OK);
ret = iDriver_SendData(lcd_init_cmds[cmd].data, lcd_init_cmds[cmd].databytes&0x1F);
if (lcd_init_cmds[cmd].databytes&0x80) {
vTaskDelay(100 / portTICK_RATE_MS);
}
cmd++;
}
//Allocate memory for the line buffers
for (int i=0; i<2; i++) {
lines[i]=heap_caps_malloc(320*PARALLEL_LINES*sizeof(uint16_t), MALLOC_CAP_DMA);
assert(lines[i]!=NULL);
}
///Enable backlight
gpio_set_level(PIN_NUM_BCKL, 0);
return ret;
}
/**
* @fn void iDriver_sendCmd(const uint8_t u8Cmd)
* @brief Send a command to the LCD.
* @param const uint8_t u8Cmd
* @return esp error code
* @author Hendrik Schutter
* @date 3.11.2020
*
* Send a command to the LCD. Uses spi_device_polling_transmit, which waits
* until the transfer is complete.
*
* Since command transactions are usually small, they are handled in polling
* mode for higher speed. The overhead of interrupt transactions is more than
* just waiting for the transaction to complete.
*/
esp_err_t iDriver_sendCmd(const uint8_t u8Cmd)
{
esp_err_t ret;
spi_transaction_t t;
memset(&t, 0, sizeof(t)); //Zero out the transaction
t.length=8; //Command is 8 bits
t.tx_buffer=&u8Cmd; //The data is the cmd itself
t.user=(void*)0; //D/C needs to be set to 0
ret=spi_device_polling_transmit(spi, &t); //Transmit!
assert(ret==ESP_OK); //Should have had no issues.
return ret;
}
/**
* @fn esp_err_t iDriver_SendData(const uint8_t *pu8Data, uint16_t u16Len)
* @brief Send data to the LCD.
* @param const uint8_t *pu8Data
* @param uint16_t u16Len
* @return esp error code
* @author Hendrik Schutter
* @date 3.11.2020
*
* Send data to the LCD. Uses spi_device_polling_transmit, which waits until the
* transfer is complete.
*
* Since data transactions are usually small, they are handled in polling
* mode for higher speed. The overhead of interrupt transactions is more than
* just waiting for the transaction to complete.
*/
esp_err_t iDriver_SendData(const uint8_t *pu8Data, uint16_t u16Len)
{
esp_err_t ret;
spi_transaction_t t;
if (u16Len==0) return ESP_FAIL; //no need to send anything
memset(&t, 0, sizeof(t)); //Zero out the transaction
t.length=u16Len*8; //Len is in bytes, transaction length is in bits.
t.tx_buffer=pu8Data; //Data
t.user=(void*)1; //D/C needs to be set to 1
ret=spi_device_polling_transmit(spi, &t); //Transmit!
return ret;
}
/**
* @fn void vDriver_spiPreTransferCallback(spi_transaction_t *t)
* @brief Pre Transfer Callback
* @param spi_transaction_t *t
* @return void
* @author Hendrik Schutter
* @date 3.11.2020
*
* This function is called (in irq context!) just before a transmission starts. It will
* set the D/C line to the value indicated in the user field.
*/
void vDriver_spiPreTransferCallback(spi_transaction_t *t)
{
int dc=(int)t->user;
gpio_set_level(PIN_NUM_DC, dc);
}
/**
* @fn uint32_t vDriver_GetId(void)
* @brief get LCD driver chip id
* @param void
* @return uint32_t
* @author Hendrik Schutter
* @date 3.11.2020
*/
uint32_t vDriver_GetId(void)
{
esp_err_t ret;
//get_id cmd
ret = iDriver_sendCmd(0x04);
assert(ret==ESP_OK);
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length=8*3;
t.flags = SPI_TRANS_USE_RXDATA;
t.user = (void*)1;
ret = spi_device_polling_transmit(spi, &t);
assert( ret == ESP_OK );
return *(uint32_t*)t.rx_data;
}
/**
* @fn esp_err_t iDriver_writeFramebuffer(uint16_t ***pu16Framebuffer)
* @brief write framebuffer to LCD via SPI
* @param uint16_t ***pu16Framebuffer
* @return esp error code
* @author Hendrik Schutter
* @date 3.11.2020
*/
esp_err_t iDriver_writeFramebuffer(uint16_t ***pu16Framebuffer)
{
esp_err_t ret;
for (int y=0; y<240; y+=PARALLEL_LINES) {
vDriver_getFramenufferPerLine(lines[calc_line], y, PARALLEL_LINES, pu16Framebuffer);
//Finish up the sending process of the previous line, if any
if (sending_line!=-1)
{
ret = iDriver_sendLineFinish();
}
//Swap sending_line and calc_line
sending_line=calc_line;
calc_line=(calc_line==1)?0:1;
//Send the line we currently calculated.
iDriver_sendLines(y, lines[sending_line]);
//The line set is queued up for sending now; the actual sending happens in the
//background. We can go on to calculate the next line set as long as we do not
//touch line[sending_line]; the SPI sending process is still reading from that.
}
return ret;
}
/**
* @fn void vDriver_getFramenufferPerLine(uint16_t *pu16Dest, uint16_t u16Line, uint16_t u16Linect, uint16_t ***pu16Framebuffer)
* @brief Get the pixel data for a set of lines (with implied line size of 320)
* @param uint16_t *pu16Dest
* @param uint16_t u16Line
* @param uint16_t u16Linect
* @param uint16_t ***pu16Framebuffer
* @return void
* @author Hendrik Schutter
* @date 3.11.2020
*/
void vDriver_getFramenufferPerLine(uint16_t *pu16Dest, uint16_t u16Line, uint16_t u16Linect, uint16_t ***pu16Framebuffer)
{
for (uint16_t y=u16Line; y<u16Line+u16Linect; y++) {
for (uint16_t x=0; x<320; x++) {
*pu16Dest++=(*pu16Framebuffer)[y][x];
}
}
}
/**
* @fn static esp_err_t iDriver_sendLines(uint16_t u16Ypos, uint16_t *pu16Linedata)
* @brief send line to lcd chip
* @param uint16_t u16Ypos
* @param uint16_t *pu16Linedata
* @return esp error code
* @author Hendrik Schutter
* @date 3.11.2020
*
* To send a set of lines we have to send a command, 2 data bytes, another command, 2 more data bytes and another command
* before sending the line data itself; a total of 6 transactions. (We can't put all of this in just one transaction
* because the D/C line needs to be toggled in the middle.)
* This routine queues these commands up as interrupt transactions so they get
* sent faster (compared to calling spi_device_transmit several times), and at
* the mean while the lines for next transactions can get calculated.
*/
static esp_err_t iDriver_sendLines(uint16_t u16Ypos, uint16_t *pu16Linedata)
{
esp_err_t ret;
//Transaction descriptors. Declared static so they're not allocated on the stack; we need this memory even when this
//function is finished because the SPI driver needs access to it even while we're already calculating the next line.
static spi_transaction_t trans[6];
//In theory, it's better to initialize trans and data only once and hang on to the initialized
//variables. We allocate them on the stack, so we need to re-init them each call.
for (uint8_t x=0; x<6; x++) {
memset(&trans[x], 0, sizeof(spi_transaction_t));
if ((x&1)==0) {
//Even transfers are commands
trans[x].length=8;
trans[x].user=(void*)0;
} else {
//Odd transfers are data
trans[x].length=8*4;
trans[x].user=(void*)1;
}
trans[x].flags=SPI_TRANS_USE_TXDATA;
}
trans[0].tx_data[0]=0x2A; //Column Address Set
trans[1].tx_data[0]=0; //Start Col High
trans[1].tx_data[1]=0; //Start Col Low
trans[1].tx_data[2]=(320)>>8; //End Col High
trans[1].tx_data[3]=(320)&0xff; //End Col Low
trans[2].tx_data[0]=0x2B; //Page address set
trans[3].tx_data[0]=u16Ypos>>8; //Start page high
trans[3].tx_data[1]=u16Ypos&0xff; //start page low
trans[3].tx_data[2]=(u16Ypos+PARALLEL_LINES)>>8; //end page high
trans[3].tx_data[3]=(u16Ypos+PARALLEL_LINES)&0xff; //end page low
trans[4].tx_data[0]=0x2C; //memory write
trans[5].tx_buffer=pu16Linedata; //finally send the line data
trans[5].length=320*2*8*PARALLEL_LINES; //Data length, in bits
trans[5].flags=0; //undo SPI_TRANS_USE_TXDATA flag
//Queue all transactions.
for (uint8_t x=0; x<6; x++) {
ret=spi_device_queue_trans(spi, &trans[x], portMAX_DELAY);
assert(ret==ESP_OK);
}
//When we are here, the SPI driver is busy (in the background) getting the transactions sent. That happens
//mostly using DMA, so the CPU doesn't have much to do here. We're not going to wait for the transaction to
//finish because we may as well spend the time calculating the next line. When that is done, we can call
//send_line_finish, which will wait for the transfers to be done and check their status.
return ret;
}
/**
* @fn static esp_err_t iDriver_sendLineFinish(void)
* @brief send finish after line
* @param void
* @return esp error code
* @author Hendrik Schutter
* @date 3.11.2020
*/
static esp_err_t iDriver_sendLineFinish(void)
{
spi_transaction_t *rtrans;
esp_err_t ret;
//Wait for all 6 transactions to be done and get back the results.
for (uint8_t x=0; x<6; x++) {
ret=spi_device_get_trans_result(spi, &rtrans, portMAX_DELAY);
assert(ret==ESP_OK);
//We could inspect rtrans now if we received any info back. The LCD is treated as write-only, though.
}
return ret;
}

View File

@ -21,7 +21,6 @@
#include "freertos/task.h"
#ifdef CONFIG_IDF_TARGET_ESP32
#define LCD_HOST HSPI_HOST
#define DMA_CHAN 2
@ -33,7 +32,10 @@
#define PIN_NUM_DC 21
#define PIN_NUM_RST 18
#define PIN_NUM_BCKL 5
#endif
//To speed up transfers, every SPI transfer sends a bunch of lines. This define specifies how many. More means more memory use,
//but less overhead for setting up / finishing transfers. Make sure 240 is dividable by this.
#define PARALLEL_LINES 16
/*
The LCD needs a bunch of command/argument values to be initialized. They are stored in this struct.
@ -51,7 +53,7 @@ typedef enum {
} type_lcd_t;
void vDriver_init(spi_device_handle_t spi);
esp_err_t vDriver_init(void);
esp_err_t iDriver_writeFramebuffer(uint16_t ***pu16Framebuffer);
void vDriver_spi_pre_transfer_callback(spi_transaction_t *t);
#endif /* __DRIVER_H */

View File

@ -13,35 +13,38 @@
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "LCD.h"
/**
* @fn void app_main(void)
* @brief main task
* @param void
* @return void
* @author Hendrik Schutter
* @date 3.11.2020
*/
void app_main(void)
{
printf("Hello World!\n");
vLCD_init();
iLCD_init();
while(1){
clear_framebuffer(COLOR_RED);
vTaskDelay(1000 / portTICK_RATE_MS);
clear_framebuffer(COLOR_GREEN);
vTaskDelay(1000 / portTICK_RATE_MS);
clear_framebuffer(COLOR_BLUE);
vTaskDelay(1000 / portTICK_RATE_MS);
clear_framebuffer(COLOR_WHITE);
vTaskDelay(1000 / portTICK_RATE_MS);
clear_framebuffer(COLOR_BLACK);
vTaskDelay(1000 / portTICK_RATE_MS);
while(1) {
iLCD_clearFramebuffer(COLOR_RED);
vTaskDelay(1000 / portTICK_RATE_MS);
iLCD_clearFramebuffer(COLOR_GREEN);
vTaskDelay(1000 / portTICK_RATE_MS);
iLCD_clearFramebuffer(COLOR_BLUE);
vTaskDelay(1000 / portTICK_RATE_MS);
iLCD_clearFramebuffer(COLOR_WHITE);
vTaskDelay(1000 / portTICK_RATE_MS);
iLCD_clearFramebuffer(COLOR_BLACK);
vTaskDelay(1000 / portTICK_RATE_MS);
}
printf("end\n");
}

View File

@ -1,161 +1,59 @@
/*! @file LCD.c
@brief
@brief sets and writes framebuffer
@author Hendrik Schutter
@version V1.0
@date 03.11.2020
*/
#include "LCD.h"
#include "Driver.h"
/*
This code displays some fancy graphics on the 320x240 LCD on an ESP-WROVER_KIT board.
This example demonstrates the use of both spi_device_transmit as well as
spi_device_queue_trans/spi_device_get_trans_result and pre-transmit callbacks.
This code displays graphics on the 320x240 LCD on an ESP-WROVER_KIT board.
Some info about the ILI9341/ST7789V: It has an C/D line, which is connected to a GPIO here. It expects this
line to be low for a command and high for data. We use a pre-transmit callback here to control that
line: every transaction has as the user-definable argument the needed state of the D/C line and just
before the transaction is sent, the callback will set this line to the correct state.
*/
esp_err_t allocate_frame_buffer(uint16_t ***pPixels);
void write_framebuffer(spi_device_handle_t* spi);
#include "LCD.h"
#include "Driver.h"
uint16_t **pixels; //framebuffer
spi_device_handle_t spi;
esp_err_t iLCD_allocateFramebuffer(uint16_t ***pPixels);
uint16_t *lines[2];
//Indexes of the line currently being sent to the LCD and the line we're calculating.
int sending_line=-1;
int calc_line=0;
void vLCD_init(void) {
uint16_t **pu16Framebuffer; //framebuffer
/**
* @fn esp_err_t iLCD_init(void)
* @brief init
* @param void
* @return int
* @author Hendrik Schutter
* @date 3.11.2020
*/
esp_err_t iLCD_init(void) {
esp_err_t ret;
spi_bus_config_t buscfg= {
.miso_io_num=PIN_NUM_MISO,
.mosi_io_num=PIN_NUM_MOSI,
.sclk_io_num=PIN_NUM_CLK,
.quadwp_io_num=-1,
.quadhd_io_num=-1,
.max_transfer_sz=PARALLEL_LINES*320*2+8
};
spi_device_interface_config_t devcfg= {
#ifdef CONFIG_LCD_OVERCLOCK
.clock_speed_hz=26*1000*1000, //Clock out at 26 MHz
#else
.clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
#endif
.mode=0, //SPI mode 0
.spics_io_num=PIN_NUM_CS, //CS pin
.queue_size=7, //We want to be able to queue 7 transactions at a time
.pre_cb=vDriver_spi_pre_transfer_callback, //Specify pre-transfer callback to handle D/C line
};
//Initialize the SPI bus
ret=spi_bus_initialize(LCD_HOST, &buscfg, DMA_CHAN);
ESP_ERROR_CHECK(ret);
//Attach the LCD to the SPI bus
ret=spi_bus_add_device(LCD_HOST, &devcfg, &spi);
ESP_ERROR_CHECK(ret);
//Initialize the LCD
vDriver_init(spi);
//Initialize the Driver
vDriver_init();
//Initialize the framebuffer
ret=allocate_frame_buffer(&pixels);
ret= iLCD_allocateFramebuffer(&pu16Framebuffer);
ESP_ERROR_CHECK(ret);
//Allocate memory for the pixel buffers
for (int i=0; i<2; i++) {
lines[i]=heap_caps_malloc(320*PARALLEL_LINES*sizeof(uint16_t), MALLOC_CAP_DMA);
assert(lines[i]!=NULL);
}
return ret;
}
/* To send a set of lines we have to send a command, 2 data bytes, another command, 2 more data bytes and another command
* before sending the line data itself; a total of 6 transactions. (We can't put all of this in just one transaction
* because the D/C line needs to be toggled in the middle.)
* This routine queues these commands up as interrupt transactions so they get
* sent faster (compared to calling spi_device_transmit several times), and at
* the mean while the lines for next transactions can get calculated.
/**
* @fn esp_err_t iLCD_allocateFramebuffer(uint16_t ***pPixels)
* @brief allocate framebuffer
* @param pointer of framebuffer two dimensional array
* @return esp error code
* @author Hendrik Schutter
* @date 3.11.2020
*/
static void send_lines(spi_device_handle_t spi, int ypos, uint16_t *linedata)
{
esp_err_t ret;
int x;
//Transaction descriptors. Declared static so they're not allocated on the stack; we need this memory even when this
//function is finished because the SPI driver needs access to it even while we're already calculating the next line.
static spi_transaction_t trans[6];
//In theory, it's better to initialize trans and data only once and hang on to the initialized
//variables. We allocate them on the stack, so we need to re-init them each call.
for (x=0; x<6; x++) {
memset(&trans[x], 0, sizeof(spi_transaction_t));
if ((x&1)==0) {
//Even transfers are commands
trans[x].length=8;
trans[x].user=(void*)0;
} else {
//Odd transfers are data
trans[x].length=8*4;
trans[x].user=(void*)1;
}
trans[x].flags=SPI_TRANS_USE_TXDATA;
}
trans[0].tx_data[0]=0x2A; //Column Address Set
trans[1].tx_data[0]=0; //Start Col High
trans[1].tx_data[1]=0; //Start Col Low
trans[1].tx_data[2]=(320)>>8; //End Col High
trans[1].tx_data[3]=(320)&0xff; //End Col Low
trans[2].tx_data[0]=0x2B; //Page address set
trans[3].tx_data[0]=ypos>>8; //Start page high
trans[3].tx_data[1]=ypos&0xff; //start page low
trans[3].tx_data[2]=(ypos+PARALLEL_LINES)>>8; //end page high
trans[3].tx_data[3]=(ypos+PARALLEL_LINES)&0xff; //end page low
trans[4].tx_data[0]=0x2C; //memory write
trans[5].tx_buffer=linedata; //finally send the line data
trans[5].length=320*2*8*PARALLEL_LINES; //Data length, in bits
trans[5].flags=0; //undo SPI_TRANS_USE_TXDATA flag
//Queue all transactions.
for (x=0; x<6; x++) {
ret=spi_device_queue_trans(spi, &trans[x], portMAX_DELAY);
assert(ret==ESP_OK);
}
//When we are here, the SPI driver is busy (in the background) getting the transactions sent. That happens
//mostly using DMA, so the CPU doesn't have much to do here. We're not going to wait for the transaction to
//finish because we may as well spend the time calculating the next line. When that is done, we can call
//send_line_finish, which will wait for the transfers to be done and check their status.
}
static void send_line_finish(spi_device_handle_t spi)
{
spi_transaction_t *rtrans;
esp_err_t ret;
//Wait for all 6 transactions to be done and get back the results.
for (int x=0; x<6; x++) {
ret=spi_device_get_trans_result(spi, &rtrans, portMAX_DELAY);
assert(ret==ESP_OK);
//We could inspect rtrans now if we received any info back. The LCD is treated as write-only, though.
}
}
esp_err_t allocate_frame_buffer(uint16_t ***pPixels)
esp_err_t iLCD_allocateFramebuffer(uint16_t ***pPixels)
{
*pPixels = NULL;
esp_err_t ret = ESP_OK;
//Alocate pixel memory. Each line is an array of IMAGE_W 16-bit pixels; the `*pixels` array itself contains pointers to these lines.
*pPixels = calloc(240, sizeof(uint16_t *));
if (*pPixels == NULL) {
@ -170,53 +68,24 @@ esp_err_t allocate_frame_buffer(uint16_t ***pPixels)
}
}
return ret;
} //end fun
//Calculate the pixel data for a set of lines (with implied line size of 320). Pixels go in dest, line is the Y-coordinate of the
//first line to be calculated, linect is the amount of lines to calculate. Frame increases by one every time the entire image
//is displayed; this is used to go to the next frame of animation.
void get_framenuffer_per_line(uint16_t *dest, int line, int linect)
{
for (int y=line; y<line+linect; y++) {
for (int x=0; x<320; x++) {
*dest++=pixels[y][x];
}
}
}
void clear_framebuffer(uint16_t u16Color) {
/**
* @fn esp_err_t iLCD_clearFramebuffer(uint16_t u16Color)
* @brief clear complete framebuffer with a color
* @param RGB586 color code
* @return esp error code
* @author Hendrik Schutter
* @date 3.11.2020
*/
esp_err_t iLCD_clearFramebuffer(uint16_t u16Color) {
// uint8_t *in = (uint8_t *)bitmap;
for (int y = 0; y < 240; y++) {
for (int x = 0; x < 320; x++) {
//The LCD wants the 16-bit value in big-endian, so swap bytes
u16Color = (u16Color >> 8) | (u16Color << 8);
pixels[y][x] = u16Color;
pu16Framebuffer[y][x] = u16Color;
}
}
write_framebuffer(&spi);
}
void write_framebuffer(spi_device_handle_t* spi) {
for (int y=0; y<240; y+=PARALLEL_LINES) {
//Calculate a line.
get_framenuffer_per_line(lines[calc_line], y, PARALLEL_LINES);
//Finish up the sending process of the previous line, if any
if (sending_line!=-1)
{
send_line_finish(*spi);
}
//Swap sending_line and calc_line
sending_line=calc_line;
calc_line=(calc_line==1)?0:1;
//Send the line we currently calculated.
send_lines(*spi, y, lines[sending_line]);
//The line set is queued up for sending now; the actual sending happens in the
//background. We can go on to calculate the next line set as long as we do not
//touch line[sending_line]; the SPI sending process is still reading from that.
}
return iDriver_writeFramebuffer(&pu16Framebuffer);
}

View File

@ -18,22 +18,13 @@
#include <string.h>
#include "esp_system.h"
#define COLOR_RED 0xF800
#define COLOR_RED 0xF800
#define COLOR_GREEN 0x07E0
#define COLOR_BLUE 0x001F
#define COLOR_WHITE 0xFFFF
#define COLOR_WHITE 0xFFFF
#define COLOR_BLACK 0x0000
//To speed up transfers, every SPI transfer sends a bunch of lines. This define specifies how many. More means more memory use,
//but less overhead for setting up / finishing transfers. Make sure 240 is dividable by this.
#define PARALLEL_LINES 16
void vLCD_init(void);
void clear_framebuffer(uint16_t u16Color);
esp_err_t iLCD_init(void);
esp_err_t iLCD_clearFramebuffer(uint16_t u16Color);
#endif /* __LCD_H */

3
workspace.code-workspace Normal file
View File

@ -0,0 +1,3 @@
{
"folders": []
}