live results
This commit is contained in:
704
js/matching-worker.js
Normal file
704
js/matching-worker.js
Normal file
@ -0,0 +1,704 @@
|
||||
/**
|
||||
* LiXX Cell Pack Matcher - Web Worker
|
||||
*
|
||||
* Runs matching algorithms in a background thread to keep the UI responsive.
|
||||
* Communicates with the main thread via postMessage.
|
||||
*/
|
||||
|
||||
// =============================================================================
|
||||
// Utility Functions
|
||||
// =============================================================================
|
||||
|
||||
/**
|
||||
* Calculate the coefficient of variation (CV) as a percentage.
|
||||
*/
|
||||
function coefficientOfVariation(values) {
|
||||
if (!values || values.length === 0) return 0;
|
||||
const mean = values.reduce((a, b) => a + b, 0) / values.length;
|
||||
if (mean === 0) return 0;
|
||||
const variance = values.reduce((acc, val) => acc + Math.pow(val - mean, 2), 0) / values.length;
|
||||
return (Math.sqrt(variance) / mean) * 100;
|
||||
}
|
||||
|
||||
/**
|
||||
* Shuffle array in place using Fisher-Yates algorithm.
|
||||
*/
|
||||
function shuffleArray(array) {
|
||||
for (let i = array.length - 1; i > 0; i--) {
|
||||
const j = Math.floor(Math.random() * (i + 1));
|
||||
[array[i], array[j]] = [array[j], array[i]];
|
||||
}
|
||||
return array;
|
||||
}
|
||||
|
||||
/**
|
||||
* Deep clone an array of arrays.
|
||||
*/
|
||||
function cloneConfiguration(arr) {
|
||||
return arr.map(group => [...group]);
|
||||
}
|
||||
|
||||
// =============================================================================
|
||||
// Scoring Functions
|
||||
// =============================================================================
|
||||
|
||||
/**
|
||||
* Calculate the match score for a pack configuration.
|
||||
* Lower score = better match.
|
||||
*/
|
||||
function calculateScore(configuration, capacityWeight = 0.7, irWeight = 0.3) {
|
||||
const groupCapacities = configuration.map(group =>
|
||||
group.reduce((sum, cell) => sum + cell.capacity, 0)
|
||||
);
|
||||
|
||||
const groupIRs = configuration.map(group => {
|
||||
const irsWithValues = group.filter(cell => cell.ir !== null && cell.ir !== undefined);
|
||||
if (irsWithValues.length === 0) return null;
|
||||
return irsWithValues.reduce((sum, cell) => sum + cell.ir, 0) / irsWithValues.length;
|
||||
}).filter(ir => ir !== null);
|
||||
|
||||
const withinGroupIRVariances = configuration.map(group => {
|
||||
const irsWithValues = group.filter(cell => cell.ir !== null && cell.ir !== undefined);
|
||||
if (irsWithValues.length < 2) return 0;
|
||||
const irs = irsWithValues.map(cell => cell.ir);
|
||||
return coefficientOfVariation(irs);
|
||||
});
|
||||
|
||||
const capacityCV = coefficientOfVariation(groupCapacities);
|
||||
const avgWithinGroupIRCV = withinGroupIRVariances.length > 0
|
||||
? withinGroupIRVariances.reduce((a, b) => a + b, 0) / withinGroupIRVariances.length
|
||||
: 0;
|
||||
|
||||
const score = (capacityWeight * capacityCV) + (irWeight * avgWithinGroupIRCV);
|
||||
|
||||
return {
|
||||
score,
|
||||
capacityCV,
|
||||
irCV: avgWithinGroupIRCV,
|
||||
groupCapacities,
|
||||
groupIRs,
|
||||
withinGroupIRVariances
|
||||
};
|
||||
}
|
||||
|
||||
// =============================================================================
|
||||
// Statistics Tracker
|
||||
// =============================================================================
|
||||
|
||||
class StatsTracker {
|
||||
constructor() {
|
||||
this.startTime = Date.now();
|
||||
this.iterationTimes = [];
|
||||
this.lastIterationTime = this.startTime;
|
||||
this.windowSize = 100; // Rolling window for time estimates
|
||||
}
|
||||
|
||||
recordIteration() {
|
||||
const now = Date.now();
|
||||
const iterTime = now - this.lastIterationTime;
|
||||
this.lastIterationTime = now;
|
||||
|
||||
this.iterationTimes.push(iterTime);
|
||||
if (this.iterationTimes.length > this.windowSize) {
|
||||
this.iterationTimes.shift();
|
||||
}
|
||||
}
|
||||
|
||||
getStats(currentIteration, maxIterations) {
|
||||
const elapsedTime = Date.now() - this.startTime;
|
||||
const avgIterTime = this.iterationTimes.length > 0
|
||||
? this.iterationTimes.reduce((a, b) => a + b, 0) / this.iterationTimes.length
|
||||
: 0;
|
||||
|
||||
const remainingIterations = maxIterations - currentIteration;
|
||||
const eta = avgIterTime * remainingIterations;
|
||||
|
||||
return {
|
||||
elapsedTime,
|
||||
avgIterTime,
|
||||
eta,
|
||||
iterationsPerSecond: avgIterTime > 0 ? 1000 / avgIterTime : 0
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// =============================================================================
|
||||
// Genetic Algorithm
|
||||
// =============================================================================
|
||||
|
||||
class GeneticAlgorithm {
|
||||
constructor(cells, serial, parallel, options = {}) {
|
||||
this.cells = cells;
|
||||
this.serial = serial;
|
||||
this.parallel = parallel;
|
||||
this.totalCellsNeeded = serial * parallel;
|
||||
|
||||
this.populationSize = options.populationSize || 50;
|
||||
this.maxIterations = options.maxIterations || 5000;
|
||||
this.mutationRate = options.mutationRate || 0.15;
|
||||
this.eliteCount = options.eliteCount || 5;
|
||||
this.capacityWeight = options.capacityWeight ?? 0.7;
|
||||
this.irWeight = options.irWeight ?? 0.3;
|
||||
|
||||
this.stopped = false;
|
||||
this.bestSolution = null;
|
||||
this.bestScore = Infinity;
|
||||
this.stats = new StatsTracker();
|
||||
}
|
||||
|
||||
stop() {
|
||||
this.stopped = true;
|
||||
}
|
||||
|
||||
createIndividual(cellPool) {
|
||||
const shuffled = shuffleArray([...cellPool]).slice(0, this.totalCellsNeeded);
|
||||
const configuration = [];
|
||||
|
||||
for (let i = 0; i < this.serial; i++) {
|
||||
const group = [];
|
||||
for (let j = 0; j < this.parallel; j++) {
|
||||
group.push(shuffled[i * this.parallel + j]);
|
||||
}
|
||||
configuration.push(group);
|
||||
}
|
||||
|
||||
return configuration;
|
||||
}
|
||||
|
||||
configToIndices(config) {
|
||||
const flat = config.flat();
|
||||
return flat.map(cell => this.cells.findIndex(c => c.label === cell.label));
|
||||
}
|
||||
|
||||
indicesToConfig(indices) {
|
||||
const configuration = [];
|
||||
for (let i = 0; i < this.serial; i++) {
|
||||
const group = [];
|
||||
for (let j = 0; j < this.parallel; j++) {
|
||||
const idx = indices[i * this.parallel + j];
|
||||
group.push(this.cells[idx]);
|
||||
}
|
||||
configuration.push(group);
|
||||
}
|
||||
return configuration;
|
||||
}
|
||||
|
||||
crossover(parent1, parent2) {
|
||||
const length = parent1.length;
|
||||
const start = Math.floor(Math.random() * length);
|
||||
const end = start + Math.floor(Math.random() * (length - start));
|
||||
|
||||
const child = new Array(length).fill(-1);
|
||||
const usedIndices = new Set();
|
||||
|
||||
for (let i = start; i <= end; i++) {
|
||||
child[i] = parent1[i];
|
||||
usedIndices.add(parent1[i]);
|
||||
}
|
||||
|
||||
let childIdx = (end + 1) % length;
|
||||
for (let i = 0; i < length; i++) {
|
||||
const parent2Idx = (end + 1 + i) % length;
|
||||
if (!usedIndices.has(parent2[parent2Idx])) {
|
||||
while (child[childIdx] !== -1) {
|
||||
childIdx = (childIdx + 1) % length;
|
||||
}
|
||||
child[childIdx] = parent2[parent2Idx];
|
||||
usedIndices.add(parent2[parent2Idx]);
|
||||
childIdx = (childIdx + 1) % length;
|
||||
}
|
||||
}
|
||||
|
||||
return child;
|
||||
}
|
||||
|
||||
mutate(indices, unusedCells) {
|
||||
const mutated = [...indices];
|
||||
|
||||
if (Math.random() < this.mutationRate) {
|
||||
if (unusedCells.length > 0 && Math.random() < 0.3) {
|
||||
const replaceIdx = Math.floor(Math.random() * mutated.length);
|
||||
const unusedCell = unusedCells[Math.floor(Math.random() * unusedCells.length)];
|
||||
const unusedIdx = this.cells.findIndex(c => c.label === unusedCell.label);
|
||||
mutated[replaceIdx] = unusedIdx;
|
||||
} else {
|
||||
const i = Math.floor(Math.random() * mutated.length);
|
||||
const j = Math.floor(Math.random() * mutated.length);
|
||||
[mutated[i], mutated[j]] = [mutated[j], mutated[i]];
|
||||
}
|
||||
}
|
||||
|
||||
return mutated;
|
||||
}
|
||||
|
||||
run() {
|
||||
// Initialize population
|
||||
let population = [];
|
||||
for (let i = 0; i < this.populationSize; i++) {
|
||||
population.push(this.createIndividual(this.cells));
|
||||
}
|
||||
|
||||
// Evaluate initial population
|
||||
let evaluated = population.map(config => ({
|
||||
config,
|
||||
indices: this.configToIndices(config),
|
||||
...calculateScore(config, this.capacityWeight, this.irWeight)
|
||||
}));
|
||||
|
||||
evaluated.sort((a, b) => a.score - b.score);
|
||||
|
||||
if (evaluated[0].score < this.bestScore) {
|
||||
this.bestScore = evaluated[0].score;
|
||||
this.bestSolution = evaluated[0];
|
||||
}
|
||||
|
||||
// Calculate total combinations for display
|
||||
const totalCombinations = this.factorial(this.cells.length) /
|
||||
(this.factorial(this.cells.length - this.totalCellsNeeded) *
|
||||
Math.pow(this.factorial(this.parallel), this.serial) *
|
||||
this.factorial(this.serial));
|
||||
|
||||
// Main evolution loop
|
||||
for (let iteration = 0; iteration < this.maxIterations && !this.stopped; iteration++) {
|
||||
const newPopulation = [];
|
||||
|
||||
// Keep elite individuals
|
||||
for (let i = 0; i < this.eliteCount && i < evaluated.length; i++) {
|
||||
newPopulation.push(evaluated[i].indices);
|
||||
}
|
||||
|
||||
// Generate rest through crossover and mutation
|
||||
while (newPopulation.length < this.populationSize) {
|
||||
const tournament1 = evaluated.slice(0, Math.ceil(evaluated.length / 2));
|
||||
const tournament2 = evaluated.slice(0, Math.ceil(evaluated.length / 2));
|
||||
const parent1 = tournament1[Math.floor(Math.random() * tournament1.length)];
|
||||
const parent2 = tournament2[Math.floor(Math.random() * tournament2.length)];
|
||||
|
||||
let child = this.crossover(parent1.indices, parent2.indices);
|
||||
|
||||
const usedLabels = new Set(child.map(idx => this.cells[idx].label));
|
||||
const unusedCells = this.cells.filter(c => !usedLabels.has(c.label));
|
||||
|
||||
child = this.mutate(child, unusedCells);
|
||||
newPopulation.push(child);
|
||||
}
|
||||
|
||||
// Evaluate new population
|
||||
evaluated = newPopulation.map(indices => {
|
||||
const config = this.indicesToConfig(indices);
|
||||
return {
|
||||
config,
|
||||
indices,
|
||||
...calculateScore(config, this.capacityWeight, this.irWeight)
|
||||
};
|
||||
});
|
||||
|
||||
evaluated.sort((a, b) => a.score - b.score);
|
||||
|
||||
if (evaluated[0].score < this.bestScore) {
|
||||
this.bestScore = evaluated[0].score;
|
||||
this.bestSolution = evaluated[0];
|
||||
}
|
||||
|
||||
this.stats.recordIteration();
|
||||
|
||||
// Send progress update every 10 iterations
|
||||
if (iteration % 10 === 0 || iteration === this.maxIterations - 1) {
|
||||
const stats = this.stats.getStats(iteration, this.maxIterations);
|
||||
|
||||
self.postMessage({
|
||||
type: 'progress',
|
||||
data: {
|
||||
iteration,
|
||||
maxIterations: this.maxIterations,
|
||||
bestScore: this.bestScore,
|
||||
currentBest: this.bestSolution,
|
||||
totalCombinations,
|
||||
evaluatedCombinations: (iteration + 1) * this.populationSize,
|
||||
...stats
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
const usedLabels = new Set(this.bestSolution.config.flat().map(c => c.label));
|
||||
const excludedCells = this.cells.filter(c => !usedLabels.has(c.label));
|
||||
|
||||
return {
|
||||
configuration: this.bestSolution.config,
|
||||
score: this.bestScore,
|
||||
capacityCV: this.bestSolution.capacityCV,
|
||||
irCV: this.bestSolution.irCV,
|
||||
groupCapacities: this.bestSolution.groupCapacities,
|
||||
excludedCells,
|
||||
iterations: this.maxIterations,
|
||||
elapsedTime: Date.now() - this.stats.startTime
|
||||
};
|
||||
}
|
||||
|
||||
factorial(n) {
|
||||
if (n <= 1) return 1;
|
||||
if (n > 20) return Infinity; // Prevent overflow
|
||||
let result = 1;
|
||||
for (let i = 2; i <= n; i++) result *= i;
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
// =============================================================================
|
||||
// Simulated Annealing
|
||||
// =============================================================================
|
||||
|
||||
class SimulatedAnnealing {
|
||||
constructor(cells, serial, parallel, options = {}) {
|
||||
this.cells = cells;
|
||||
this.serial = serial;
|
||||
this.parallel = parallel;
|
||||
this.totalCellsNeeded = serial * parallel;
|
||||
|
||||
this.maxIterations = options.maxIterations || 5000;
|
||||
this.initialTemp = options.initialTemp || 100;
|
||||
this.coolingRate = options.coolingRate || 0.995;
|
||||
this.capacityWeight = options.capacityWeight ?? 0.7;
|
||||
this.irWeight = options.irWeight ?? 0.3;
|
||||
|
||||
this.stopped = false;
|
||||
this.bestSolution = null;
|
||||
this.bestScore = Infinity;
|
||||
this.stats = new StatsTracker();
|
||||
}
|
||||
|
||||
stop() {
|
||||
this.stopped = true;
|
||||
}
|
||||
|
||||
createInitialConfig() {
|
||||
const shuffled = shuffleArray([...this.cells]).slice(0, this.totalCellsNeeded);
|
||||
const configuration = [];
|
||||
|
||||
for (let i = 0; i < this.serial; i++) {
|
||||
const group = [];
|
||||
for (let j = 0; j < this.parallel; j++) {
|
||||
group.push(shuffled[i * this.parallel + j]);
|
||||
}
|
||||
configuration.push(group);
|
||||
}
|
||||
|
||||
return configuration;
|
||||
}
|
||||
|
||||
getNeighbor(config) {
|
||||
const newConfig = cloneConfiguration(config);
|
||||
const usedLabels = new Set(config.flat().map(c => c.label));
|
||||
const unusedCells = this.cells.filter(c => !usedLabels.has(c.label));
|
||||
|
||||
const moveType = Math.random();
|
||||
|
||||
if (unusedCells.length > 0 && moveType < 0.3) {
|
||||
const groupIdx = Math.floor(Math.random() * this.serial);
|
||||
const cellIdx = Math.floor(Math.random() * this.parallel);
|
||||
const unusedCell = unusedCells[Math.floor(Math.random() * unusedCells.length)];
|
||||
newConfig[groupIdx][cellIdx] = unusedCell;
|
||||
} else if (moveType < 0.65) {
|
||||
const group1 = Math.floor(Math.random() * this.serial);
|
||||
let group2 = Math.floor(Math.random() * this.serial);
|
||||
while (group2 === group1 && this.serial > 1) {
|
||||
group2 = Math.floor(Math.random() * this.serial);
|
||||
}
|
||||
const cell1 = Math.floor(Math.random() * this.parallel);
|
||||
const cell2 = Math.floor(Math.random() * this.parallel);
|
||||
|
||||
const temp = newConfig[group1][cell1];
|
||||
newConfig[group1][cell1] = newConfig[group2][cell2];
|
||||
newConfig[group2][cell2] = temp;
|
||||
} else {
|
||||
const groupIdx = Math.floor(Math.random() * this.serial);
|
||||
if (this.parallel >= 2) {
|
||||
const cell1 = Math.floor(Math.random() * this.parallel);
|
||||
let cell2 = Math.floor(Math.random() * this.parallel);
|
||||
while (cell2 === cell1) {
|
||||
cell2 = Math.floor(Math.random() * this.parallel);
|
||||
}
|
||||
const temp = newConfig[groupIdx][cell1];
|
||||
newConfig[groupIdx][cell1] = newConfig[groupIdx][cell2];
|
||||
newConfig[groupIdx][cell2] = temp;
|
||||
}
|
||||
}
|
||||
|
||||
return newConfig;
|
||||
}
|
||||
|
||||
run() {
|
||||
let current = this.createInitialConfig();
|
||||
let currentScore = calculateScore(current, this.capacityWeight, this.irWeight);
|
||||
|
||||
this.bestSolution = { config: cloneConfiguration(current), ...currentScore };
|
||||
this.bestScore = currentScore.score;
|
||||
|
||||
let temperature = this.initialTemp;
|
||||
let acceptedMoves = 0;
|
||||
let totalMoves = 0;
|
||||
|
||||
for (let iteration = 0; iteration < this.maxIterations && !this.stopped; iteration++) {
|
||||
const neighbor = this.getNeighbor(current);
|
||||
const neighborScore = calculateScore(neighbor, this.capacityWeight, this.irWeight);
|
||||
|
||||
const delta = neighborScore.score - currentScore.score;
|
||||
totalMoves++;
|
||||
|
||||
if (delta < 0 || Math.random() < Math.exp(-delta / temperature)) {
|
||||
current = neighbor;
|
||||
currentScore = neighborScore;
|
||||
acceptedMoves++;
|
||||
|
||||
if (currentScore.score < this.bestScore) {
|
||||
this.bestScore = currentScore.score;
|
||||
this.bestSolution = { config: cloneConfiguration(current), ...currentScore };
|
||||
}
|
||||
}
|
||||
|
||||
temperature *= this.coolingRate;
|
||||
this.stats.recordIteration();
|
||||
|
||||
if (iteration % 50 === 0 || iteration === this.maxIterations - 1) {
|
||||
const stats = this.stats.getStats(iteration, this.maxIterations);
|
||||
|
||||
self.postMessage({
|
||||
type: 'progress',
|
||||
data: {
|
||||
iteration,
|
||||
maxIterations: this.maxIterations,
|
||||
bestScore: this.bestScore,
|
||||
currentBest: this.bestSolution,
|
||||
temperature,
|
||||
acceptanceRate: totalMoves > 0 ? (acceptedMoves / totalMoves * 100) : 0,
|
||||
evaluatedCombinations: iteration + 1,
|
||||
...stats
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
const usedLabels = new Set(this.bestSolution.config.flat().map(c => c.label));
|
||||
const excludedCells = this.cells.filter(c => !usedLabels.has(c.label));
|
||||
|
||||
return {
|
||||
configuration: this.bestSolution.config,
|
||||
score: this.bestScore,
|
||||
capacityCV: this.bestSolution.capacityCV,
|
||||
irCV: this.bestSolution.irCV,
|
||||
groupCapacities: this.bestSolution.groupCapacities,
|
||||
excludedCells,
|
||||
iterations: this.maxIterations,
|
||||
elapsedTime: Date.now() - this.stats.startTime
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// =============================================================================
|
||||
// Exhaustive Search
|
||||
// =============================================================================
|
||||
|
||||
class ExhaustiveSearch {
|
||||
constructor(cells, serial, parallel, options = {}) {
|
||||
this.cells = cells;
|
||||
this.serial = serial;
|
||||
this.parallel = parallel;
|
||||
this.totalCellsNeeded = serial * parallel;
|
||||
|
||||
this.capacityWeight = options.capacityWeight ?? 0.7;
|
||||
this.irWeight = options.irWeight ?? 0.3;
|
||||
this.maxIterations = options.maxIterations || 100000;
|
||||
|
||||
this.stopped = false;
|
||||
this.bestSolution = null;
|
||||
this.bestScore = Infinity;
|
||||
this.stats = new StatsTracker();
|
||||
}
|
||||
|
||||
stop() {
|
||||
this.stopped = true;
|
||||
}
|
||||
|
||||
*combinations(array, k) {
|
||||
if (k === 0) {
|
||||
yield [];
|
||||
return;
|
||||
}
|
||||
if (array.length < k) return;
|
||||
|
||||
const [first, ...rest] = array;
|
||||
for (const combo of this.combinations(rest, k - 1)) {
|
||||
yield [first, ...combo];
|
||||
}
|
||||
yield* this.combinations(rest, k);
|
||||
}
|
||||
|
||||
*generatePartitions(cells, groupSize, numGroups) {
|
||||
if (numGroups === 0) {
|
||||
yield [];
|
||||
return;
|
||||
}
|
||||
|
||||
if (cells.length < groupSize * numGroups) return;
|
||||
|
||||
for (const group of this.combinations(cells, groupSize)) {
|
||||
const remaining = cells.filter(c => !group.includes(c));
|
||||
for (const rest of this.generatePartitions(remaining, groupSize, numGroups - 1)) {
|
||||
yield [group, ...rest];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
calculateTotalCombinations() {
|
||||
// Formula: C(n, k) * C(n-k, k) * ... / numGroups! for identical groups
|
||||
const n = this.cells.length;
|
||||
const k = this.parallel;
|
||||
const numGroups = this.serial;
|
||||
|
||||
let total = 1;
|
||||
let remaining = n;
|
||||
|
||||
for (let i = 0; i < numGroups; i++) {
|
||||
total *= this.binomial(remaining, k);
|
||||
remaining -= k;
|
||||
}
|
||||
|
||||
// Divide by numGroups! if groups are interchangeable
|
||||
// (but for battery packs, position matters, so we don't divide)
|
||||
|
||||
return total;
|
||||
}
|
||||
|
||||
binomial(n, k) {
|
||||
if (k > n) return 0;
|
||||
if (k === 0 || k === n) return 1;
|
||||
|
||||
let result = 1;
|
||||
for (let i = 0; i < k; i++) {
|
||||
result = result * (n - i) / (i + 1);
|
||||
}
|
||||
return Math.round(result);
|
||||
}
|
||||
|
||||
run() {
|
||||
let iteration = 0;
|
||||
const totalCombinations = this.calculateTotalCombinations();
|
||||
|
||||
const cellCombos = this.cells.length > this.totalCellsNeeded
|
||||
? this.combinations(this.cells, this.totalCellsNeeded)
|
||||
: [[...this.cells]];
|
||||
|
||||
for (const cellSubset of cellCombos) {
|
||||
if (this.stopped) break;
|
||||
|
||||
for (const partition of this.generatePartitions(cellSubset, this.parallel, this.serial)) {
|
||||
if (this.stopped) break;
|
||||
|
||||
const scoreResult = calculateScore(partition, this.capacityWeight, this.irWeight);
|
||||
|
||||
if (scoreResult.score < this.bestScore) {
|
||||
this.bestScore = scoreResult.score;
|
||||
this.bestSolution = { config: partition, ...scoreResult };
|
||||
}
|
||||
|
||||
iteration++;
|
||||
this.stats.recordIteration();
|
||||
|
||||
if (iteration % 500 === 0) {
|
||||
const stats = this.stats.getStats(iteration, Math.min(totalCombinations, this.maxIterations));
|
||||
|
||||
self.postMessage({
|
||||
type: 'progress',
|
||||
data: {
|
||||
iteration,
|
||||
maxIterations: Math.min(totalCombinations, this.maxIterations),
|
||||
bestScore: this.bestScore,
|
||||
currentBest: this.bestSolution,
|
||||
totalCombinations,
|
||||
evaluatedCombinations: iteration,
|
||||
...stats
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
if (iteration >= this.maxIterations) {
|
||||
this.stopped = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Final progress update
|
||||
const stats = this.stats.getStats(iteration, Math.min(totalCombinations, this.maxIterations));
|
||||
self.postMessage({
|
||||
type: 'progress',
|
||||
data: {
|
||||
iteration,
|
||||
maxIterations: Math.min(totalCombinations, this.maxIterations),
|
||||
bestScore: this.bestScore,
|
||||
currentBest: this.bestSolution,
|
||||
totalCombinations,
|
||||
evaluatedCombinations: iteration,
|
||||
...stats
|
||||
}
|
||||
});
|
||||
|
||||
const usedLabels = new Set(this.bestSolution.config.flat().map(c => c.label));
|
||||
const excludedCells = this.cells.filter(c => !usedLabels.has(c.label));
|
||||
|
||||
return {
|
||||
configuration: this.bestSolution.config,
|
||||
score: this.bestScore,
|
||||
capacityCV: this.bestSolution.capacityCV,
|
||||
irCV: this.bestSolution.irCV,
|
||||
groupCapacities: this.bestSolution.groupCapacities,
|
||||
excludedCells,
|
||||
iterations: iteration,
|
||||
elapsedTime: Date.now() - this.stats.startTime
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// =============================================================================
|
||||
// Worker Message Handler
|
||||
// =============================================================================
|
||||
|
||||
let currentAlgorithm = null;
|
||||
|
||||
self.onmessage = function (e) {
|
||||
const { type, data } = e.data;
|
||||
|
||||
switch (type) {
|
||||
case 'start':
|
||||
const { cells, serial, parallel, algorithm, options } = data;
|
||||
|
||||
switch (algorithm) {
|
||||
case 'genetic':
|
||||
currentAlgorithm = new GeneticAlgorithm(cells, serial, parallel, options);
|
||||
break;
|
||||
case 'simulated-annealing':
|
||||
currentAlgorithm = new SimulatedAnnealing(cells, serial, parallel, options);
|
||||
break;
|
||||
case 'exhaustive':
|
||||
currentAlgorithm = new ExhaustiveSearch(cells, serial, parallel, options);
|
||||
break;
|
||||
}
|
||||
|
||||
try {
|
||||
const result = currentAlgorithm.run();
|
||||
self.postMessage({ type: 'complete', data: result });
|
||||
} catch (error) {
|
||||
self.postMessage({ type: 'error', data: error.message });
|
||||
}
|
||||
|
||||
currentAlgorithm = null;
|
||||
break;
|
||||
|
||||
case 'stop':
|
||||
if (currentAlgorithm) {
|
||||
currentAlgorithm.stop();
|
||||
}
|
||||
break;
|
||||
}
|
||||
};
|
||||
Reference in New Issue
Block a user