switch to web app

This commit is contained in:
2025-12-20 15:06:53 +01:00
parent 52cd4ea0ec
commit f600897ee8
7 changed files with 2682 additions and 10 deletions

680
js/matching-algorithms.js Normal file
View File

@ -0,0 +1,680 @@
/**
* LiXX Cell Pack Matcher - Matching Algorithms
*
* Implements optimized algorithms for lithium cell matching:
* - Genetic Algorithm (default, fast)
* - Simulated Annealing
* - Exhaustive search (for small configurations)
*
* Based on research:
* - Shi et al., 2013: "Internal resistance matching for parallel-connected
* lithium-ion cells and impacts on battery pack cycle life"
* DOI: 10.1016/j.jpowsour.2013.11.064
*/
// =============================================================================
// Utility Functions
// =============================================================================
/**
* Calculate the coefficient of variation (CV) as a percentage.
* CV = (standard deviation / mean) * 100
* @param {number[]} values - Array of numeric values
* @returns {number} CV as percentage, or 0 if invalid
*/
function coefficientOfVariation(values) {
if (!values || values.length === 0) return 0;
const mean = values.reduce((a, b) => a + b, 0) / values.length;
if (mean === 0) return 0;
const variance = values.reduce((acc, val) => acc + Math.pow(val - mean, 2), 0) / values.length;
return (Math.sqrt(variance) / mean) * 100;
}
/**
* Shuffle array in place using Fisher-Yates algorithm.
* @param {Array} array - Array to shuffle
* @returns {Array} The same array, shuffled
*/
function shuffleArray(array) {
for (let i = array.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[array[i], array[j]] = [array[j], array[i]];
}
return array;
}
/**
* Deep clone an array of arrays.
* @param {Array[]} arr - Array to clone
* @returns {Array[]} Cloned array
*/
function cloneConfiguration(arr) {
return arr.map(group => [...group]);
}
// =============================================================================
// Scoring Functions
// =============================================================================
/**
* Calculate the match score for a pack configuration.
* Lower score = better match.
*
* The score combines:
* - Capacity variance between parallel groups (weighted by capacityWeight)
* - Internal resistance variance within parallel groups (weighted by irWeight)
*
* @param {Object[][]} configuration - Array of parallel groups, each containing cell objects
* @param {number} capacityWeight - Weight for capacity matching (0-1)
* @param {number} irWeight - Weight for IR matching (0-1)
* @returns {Object} Score breakdown
*/
function calculateScore(configuration, capacityWeight = 0.7, irWeight = 0.3) {
// Calculate total capacity for each parallel group
const groupCapacities = configuration.map(group =>
group.reduce((sum, cell) => sum + cell.capacity, 0)
);
// Calculate average IR for each parallel group
const groupIRs = configuration.map(group => {
const irsWithValues = group.filter(cell => cell.ir !== null && cell.ir !== undefined);
if (irsWithValues.length === 0) return null;
return irsWithValues.reduce((sum, cell) => sum + cell.ir, 0) / irsWithValues.length;
}).filter(ir => ir !== null);
// Calculate IR variance within each parallel group (important for parallel cells)
const withinGroupIRVariances = configuration.map(group => {
const irsWithValues = group.filter(cell => cell.ir !== null && cell.ir !== undefined);
if (irsWithValues.length < 2) return 0;
const irs = irsWithValues.map(cell => cell.ir);
return coefficientOfVariation(irs);
});
// Capacity CV between groups (should be low for balanced pack)
const capacityCV = coefficientOfVariation(groupCapacities);
// Average IR CV within groups (should be low for parallel cells)
const avgWithinGroupIRCV = withinGroupIRVariances.length > 0
? withinGroupIRVariances.reduce((a, b) => a + b, 0) / withinGroupIRVariances.length
: 0;
// Combined score (lower is better)
const score = (capacityWeight * capacityCV) + (irWeight * avgWithinGroupIRCV);
return {
score,
capacityCV,
irCV: avgWithinGroupIRCV,
groupCapacities,
groupIRs,
withinGroupIRVariances
};
}
// =============================================================================
// Genetic Algorithm
// =============================================================================
/**
* Genetic Algorithm for cell matching.
* Fast and effective for most configurations.
*/
class GeneticAlgorithm {
/**
* @param {Object[]} cells - Array of cell objects {label, capacity, ir}
* @param {number} serial - Number of series groups
* @param {number} parallel - Number of cells in parallel per group
* @param {Object} options - Algorithm options
*/
constructor(cells, serial, parallel, options = {}) {
this.cells = cells;
this.serial = serial;
this.parallel = parallel;
this.totalCellsNeeded = serial * parallel;
// Options with defaults
this.populationSize = options.populationSize || 50;
this.maxIterations = options.maxIterations || 5000;
this.mutationRate = options.mutationRate || 0.15;
this.eliteCount = options.eliteCount || 5;
this.capacityWeight = options.capacityWeight ?? 0.7;
this.irWeight = options.irWeight ?? 0.3;
this.onProgress = options.onProgress || (() => { });
this.stopped = false;
this.bestSolution = null;
this.bestScore = Infinity;
}
/**
* Stop the algorithm.
*/
stop() {
this.stopped = true;
}
/**
* Create a random individual (configuration).
* @param {Object[]} cellPool - Cells to choose from
* @returns {Object[][]} Configuration
*/
createIndividual(cellPool) {
const shuffled = shuffleArray([...cellPool]).slice(0, this.totalCellsNeeded);
const configuration = [];
for (let i = 0; i < this.serial; i++) {
const group = [];
for (let j = 0; j < this.parallel; j++) {
group.push(shuffled[i * this.parallel + j]);
}
configuration.push(group);
}
return configuration;
}
/**
* Convert configuration to flat array of cell indices for crossover.
* @param {Object[][]} config - Configuration
* @returns {number[]} Flat array of cell indices
*/
configToIndices(config) {
const flat = config.flat();
return flat.map(cell => this.cells.findIndex(c => c.label === cell.label));
}
/**
* Convert indices back to configuration.
* @param {number[]} indices - Array of cell indices
* @returns {Object[][]} Configuration
*/
indicesToConfig(indices) {
const configuration = [];
for (let i = 0; i < this.serial; i++) {
const group = [];
for (let j = 0; j < this.parallel; j++) {
const idx = indices[i * this.parallel + j];
group.push(this.cells[idx]);
}
configuration.push(group);
}
return configuration;
}
/**
* Perform crossover between two parents using Order Crossover (OX).
* @param {number[]} parent1 - First parent indices
* @param {number[]} parent2 - Second parent indices
* @returns {number[]} Child indices
*/
crossover(parent1, parent2) {
const length = parent1.length;
const start = Math.floor(Math.random() * length);
const end = start + Math.floor(Math.random() * (length - start));
const child = new Array(length).fill(-1);
const usedIndices = new Set();
// Copy segment from parent1
for (let i = start; i <= end; i++) {
child[i] = parent1[i];
usedIndices.add(parent1[i]);
}
// Fill remaining from parent2
let childIdx = (end + 1) % length;
for (let i = 0; i < length; i++) {
const parent2Idx = (end + 1 + i) % length;
if (!usedIndices.has(parent2[parent2Idx])) {
while (child[childIdx] !== -1) {
childIdx = (childIdx + 1) % length;
}
child[childIdx] = parent2[parent2Idx];
usedIndices.add(parent2[parent2Idx]);
childIdx = (childIdx + 1) % length;
}
}
return child;
}
/**
* Mutate an individual by swapping cells.
* @param {number[]} indices - Individual indices
* @param {Object[]} unusedCells - Cells not in this configuration
* @returns {number[]} Mutated indices
*/
mutate(indices, unusedCells) {
const mutated = [...indices];
if (Math.random() < this.mutationRate) {
if (unusedCells.length > 0 && Math.random() < 0.3) {
// Replace a cell with an unused one
const replaceIdx = Math.floor(Math.random() * mutated.length);
const unusedCell = unusedCells[Math.floor(Math.random() * unusedCells.length)];
const unusedIdx = this.cells.findIndex(c => c.label === unusedCell.label);
mutated[replaceIdx] = unusedIdx;
} else {
// Swap two cells within the configuration
const i = Math.floor(Math.random() * mutated.length);
const j = Math.floor(Math.random() * mutated.length);
[mutated[i], mutated[j]] = [mutated[j], mutated[i]];
}
}
return mutated;
}
/**
* Run the genetic algorithm.
* @returns {Promise<Object>} Best solution found
*/
async run() {
const startTime = Date.now();
// Initialize population
let population = [];
for (let i = 0; i < this.populationSize; i++) {
population.push(this.createIndividual(this.cells));
}
// Evaluate initial population
let evaluated = population.map(config => ({
config,
indices: this.configToIndices(config),
...calculateScore(config, this.capacityWeight, this.irWeight)
}));
// Sort by score
evaluated.sort((a, b) => a.score - b.score);
if (evaluated[0].score < this.bestScore) {
this.bestScore = evaluated[0].score;
this.bestSolution = evaluated[0];
}
// Main evolution loop
for (let iteration = 0; iteration < this.maxIterations && !this.stopped; iteration++) {
// Selection (tournament selection)
const newPopulation = [];
// Keep elite individuals
for (let i = 0; i < this.eliteCount && i < evaluated.length; i++) {
newPopulation.push(evaluated[i].indices);
}
// Generate rest through crossover and mutation
while (newPopulation.length < this.populationSize) {
// Tournament selection
const tournament1 = evaluated.slice(0, Math.ceil(evaluated.length / 2));
const tournament2 = evaluated.slice(0, Math.ceil(evaluated.length / 2));
const parent1 = tournament1[Math.floor(Math.random() * tournament1.length)];
const parent2 = tournament2[Math.floor(Math.random() * tournament2.length)];
// Crossover
let child = this.crossover(parent1.indices, parent2.indices);
// Determine unused cells
const usedLabels = new Set(child.map(idx => this.cells[idx].label));
const unusedCells = this.cells.filter(c => !usedLabels.has(c.label));
// Mutation
child = this.mutate(child, unusedCells);
newPopulation.push(child);
}
// Evaluate new population
evaluated = newPopulation.map(indices => {
const config = this.indicesToConfig(indices);
return {
config,
indices,
...calculateScore(config, this.capacityWeight, this.irWeight)
};
});
// Sort by score
evaluated.sort((a, b) => a.score - b.score);
// Update best solution
if (evaluated[0].score < this.bestScore) {
this.bestScore = evaluated[0].score;
this.bestSolution = evaluated[0];
}
// Progress callback
if (iteration % 50 === 0 || iteration === this.maxIterations - 1) {
this.onProgress({
iteration,
maxIterations: this.maxIterations,
bestScore: this.bestScore,
currentBest: this.bestSolution,
elapsedTime: Date.now() - startTime
});
// Allow UI to update
await new Promise(resolve => setTimeout(resolve, 0));
}
}
// Determine excluded cells
const usedLabels = new Set(this.bestSolution.config.flat().map(c => c.label));
const excludedCells = this.cells.filter(c => !usedLabels.has(c.label));
return {
configuration: this.bestSolution.config,
score: this.bestScore,
capacityCV: this.bestSolution.capacityCV,
irCV: this.bestSolution.irCV,
groupCapacities: this.bestSolution.groupCapacities,
excludedCells,
iterations: this.maxIterations,
elapsedTime: Date.now() - startTime
};
}
}
// =============================================================================
// Simulated Annealing
// =============================================================================
/**
* Simulated Annealing algorithm for cell matching.
* Good for escaping local minima.
*/
class SimulatedAnnealing {
/**
* @param {Object[]} cells - Array of cell objects
* @param {number} serial - Number of series groups
* @param {number} parallel - Number of cells in parallel per group
* @param {Object} options - Algorithm options
*/
constructor(cells, serial, parallel, options = {}) {
this.cells = cells;
this.serial = serial;
this.parallel = parallel;
this.totalCellsNeeded = serial * parallel;
this.maxIterations = options.maxIterations || 5000;
this.initialTemp = options.initialTemp || 100;
this.coolingRate = options.coolingRate || 0.995;
this.capacityWeight = options.capacityWeight ?? 0.7;
this.irWeight = options.irWeight ?? 0.3;
this.onProgress = options.onProgress || (() => { });
this.stopped = false;
this.bestSolution = null;
this.bestScore = Infinity;
}
stop() {
this.stopped = true;
}
/**
* Create initial configuration.
*/
createInitialConfig() {
const shuffled = shuffleArray([...this.cells]).slice(0, this.totalCellsNeeded);
const configuration = [];
for (let i = 0; i < this.serial; i++) {
const group = [];
for (let j = 0; j < this.parallel; j++) {
group.push(shuffled[i * this.parallel + j]);
}
configuration.push(group);
}
return configuration;
}
/**
* Generate a neighbor solution by making a small change.
*/
getNeighbor(config) {
const newConfig = cloneConfiguration(config);
const usedLabels = new Set(config.flat().map(c => c.label));
const unusedCells = this.cells.filter(c => !usedLabels.has(c.label));
const moveType = Math.random();
if (unusedCells.length > 0 && moveType < 0.3) {
// Replace a cell with an unused one
const groupIdx = Math.floor(Math.random() * this.serial);
const cellIdx = Math.floor(Math.random() * this.parallel);
const unusedCell = unusedCells[Math.floor(Math.random() * unusedCells.length)];
newConfig[groupIdx][cellIdx] = unusedCell;
} else if (moveType < 0.65) {
// Swap cells between different groups
const group1 = Math.floor(Math.random() * this.serial);
let group2 = Math.floor(Math.random() * this.serial);
while (group2 === group1 && this.serial > 1) {
group2 = Math.floor(Math.random() * this.serial);
}
const cell1 = Math.floor(Math.random() * this.parallel);
const cell2 = Math.floor(Math.random() * this.parallel);
const temp = newConfig[group1][cell1];
newConfig[group1][cell1] = newConfig[group2][cell2];
newConfig[group2][cell2] = temp;
} else {
// Swap cells within the same group
const groupIdx = Math.floor(Math.random() * this.serial);
if (this.parallel >= 2) {
const cell1 = Math.floor(Math.random() * this.parallel);
let cell2 = Math.floor(Math.random() * this.parallel);
while (cell2 === cell1) {
cell2 = Math.floor(Math.random() * this.parallel);
}
const temp = newConfig[groupIdx][cell1];
newConfig[groupIdx][cell1] = newConfig[groupIdx][cell2];
newConfig[groupIdx][cell2] = temp;
}
}
return newConfig;
}
/**
* Run simulated annealing.
*/
async run() {
const startTime = Date.now();
let current = this.createInitialConfig();
let currentScore = calculateScore(current, this.capacityWeight, this.irWeight);
this.bestSolution = { config: cloneConfiguration(current), ...currentScore };
this.bestScore = currentScore.score;
let temperature = this.initialTemp;
for (let iteration = 0; iteration < this.maxIterations && !this.stopped; iteration++) {
const neighbor = this.getNeighbor(current);
const neighborScore = calculateScore(neighbor, this.capacityWeight, this.irWeight);
const delta = neighborScore.score - currentScore.score;
// Accept if better, or with probability based on temperature
if (delta < 0 || Math.random() < Math.exp(-delta / temperature)) {
current = neighbor;
currentScore = neighborScore;
if (currentScore.score < this.bestScore) {
this.bestScore = currentScore.score;
this.bestSolution = { config: cloneConfiguration(current), ...currentScore };
}
}
// Cool down
temperature *= this.coolingRate;
// Progress callback
if (iteration % 100 === 0 || iteration === this.maxIterations - 1) {
this.onProgress({
iteration,
maxIterations: this.maxIterations,
bestScore: this.bestScore,
currentBest: this.bestSolution,
temperature,
elapsedTime: Date.now() - startTime
});
await new Promise(resolve => setTimeout(resolve, 0));
}
}
const usedLabels = new Set(this.bestSolution.config.flat().map(c => c.label));
const excludedCells = this.cells.filter(c => !usedLabels.has(c.label));
return {
configuration: this.bestSolution.config,
score: this.bestScore,
capacityCV: this.bestSolution.capacityCV,
irCV: this.bestSolution.irCV,
groupCapacities: this.bestSolution.groupCapacities,
excludedCells,
iterations: this.maxIterations,
elapsedTime: Date.now() - startTime
};
}
}
// =============================================================================
// Exhaustive Search (for small configurations)
// =============================================================================
/**
* Exhaustive search - finds the globally optimal solution.
* Only practical for small configurations due to factorial complexity.
*/
class ExhaustiveSearch {
constructor(cells, serial, parallel, options = {}) {
this.cells = cells;
this.serial = serial;
this.parallel = parallel;
this.totalCellsNeeded = serial * parallel;
this.capacityWeight = options.capacityWeight ?? 0.7;
this.irWeight = options.irWeight ?? 0.3;
this.onProgress = options.onProgress || (() => { });
this.maxIterations = options.maxIterations || 100000;
this.stopped = false;
this.bestSolution = null;
this.bestScore = Infinity;
}
stop() {
this.stopped = true;
}
/**
* Generate all combinations of k elements from array.
*/
*combinations(array, k) {
if (k === 0) {
yield [];
return;
}
if (array.length < k) return;
const [first, ...rest] = array;
for (const combo of this.combinations(rest, k - 1)) {
yield [first, ...combo];
}
yield* this.combinations(rest, k);
}
/**
* Generate all partitions of cells into groups.
*/
*generatePartitions(cells, groupSize, numGroups) {
if (numGroups === 0) {
yield [];
return;
}
if (cells.length < groupSize * numGroups) return;
for (const group of this.combinations(cells, groupSize)) {
const remaining = cells.filter(c => !group.includes(c));
for (const rest of this.generatePartitions(remaining, groupSize, numGroups - 1)) {
yield [group, ...rest];
}
}
}
async run() {
const startTime = Date.now();
let iteration = 0;
// Select best subset if we have more cells than needed
const cellCombos = this.cells.length > this.totalCellsNeeded
? this.combinations(this.cells, this.totalCellsNeeded)
: [[...this.cells]];
for (const cellSubset of cellCombos) {
if (this.stopped) break;
for (const partition of this.generatePartitions(cellSubset, this.parallel, this.serial)) {
if (this.stopped) break;
const scoreResult = calculateScore(partition, this.capacityWeight, this.irWeight);
if (scoreResult.score < this.bestScore) {
this.bestScore = scoreResult.score;
this.bestSolution = { config: partition, ...scoreResult };
}
iteration++;
if (iteration % 1000 === 0) {
this.onProgress({
iteration,
maxIterations: this.maxIterations,
bestScore: this.bestScore,
currentBest: this.bestSolution,
elapsedTime: Date.now() - startTime
});
await new Promise(resolve => setTimeout(resolve, 0));
}
if (iteration >= this.maxIterations) {
this.stopped = true;
break;
}
}
}
const usedLabels = new Set(this.bestSolution.config.flat().map(c => c.label));
const excludedCells = this.cells.filter(c => !usedLabels.has(c.label));
return {
configuration: this.bestSolution.config,
score: this.bestScore,
capacityCV: this.bestSolution.capacityCV,
irCV: this.bestSolution.irCV,
groupCapacities: this.bestSolution.groupCapacities,
excludedCells,
iterations: iteration,
elapsedTime: Date.now() - startTime
};
}
}
// =============================================================================
// Export
// =============================================================================
// Make available globally for the main app
window.CellMatchingAlgorithms = {
GeneticAlgorithm,
SimulatedAnnealing,
ExhaustiveSearch,
calculateScore,
coefficientOfVariation
};