|
|
|
|
@ -122,411 +122,6 @@ class StatsTracker {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// =============================================================================
|
|
|
|
|
// Genetic Algorithm
|
|
|
|
|
// =============================================================================
|
|
|
|
|
|
|
|
|
|
class GeneticAlgorithm {
|
|
|
|
|
constructor(cells, serial, parallel, options = {}) {
|
|
|
|
|
this.cells = cells;
|
|
|
|
|
this.serial = serial;
|
|
|
|
|
this.parallel = parallel;
|
|
|
|
|
this.totalCellsNeeded = serial * parallel;
|
|
|
|
|
|
|
|
|
|
this.populationSize = options.populationSize || 50;
|
|
|
|
|
this.maxIterations = options.maxIterations || 5000;
|
|
|
|
|
this.mutationRate = options.mutationRate || 0.15;
|
|
|
|
|
this.eliteCount = options.eliteCount || 5;
|
|
|
|
|
this.capacityWeight = options.capacityWeight ?? 0.7;
|
|
|
|
|
this.irWeight = options.irWeight ?? 0.3;
|
|
|
|
|
|
|
|
|
|
this.stopped = false;
|
|
|
|
|
this.bestSolution = null;
|
|
|
|
|
this.bestScore = Infinity;
|
|
|
|
|
this.stats = new StatsTracker();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
stop() {
|
|
|
|
|
this.stopped = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
createIndividual(cellPool) {
|
|
|
|
|
const shuffled = shuffleArray([...cellPool]).slice(0, this.totalCellsNeeded);
|
|
|
|
|
const configuration = [];
|
|
|
|
|
|
|
|
|
|
for (let i = 0; i < this.serial; i++) {
|
|
|
|
|
const group = [];
|
|
|
|
|
for (let j = 0; j < this.parallel; j++) {
|
|
|
|
|
group.push(shuffled[i * this.parallel + j]);
|
|
|
|
|
}
|
|
|
|
|
configuration.push(group);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return configuration;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
configToIndices(config) {
|
|
|
|
|
const flat = config.flat();
|
|
|
|
|
return flat.map(cell => this.cells.findIndex(c => c.label === cell.label));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
indicesToConfig(indices) {
|
|
|
|
|
const configuration = [];
|
|
|
|
|
for (let i = 0; i < this.serial; i++) {
|
|
|
|
|
const group = [];
|
|
|
|
|
for (let j = 0; j < this.parallel; j++) {
|
|
|
|
|
const idx = indices[i * this.parallel + j];
|
|
|
|
|
// Safety check: ensure index is valid
|
|
|
|
|
if (idx >= 0 && idx < this.cells.length) {
|
|
|
|
|
group.push(this.cells[idx]);
|
|
|
|
|
} else {
|
|
|
|
|
// Fallback: use a random valid cell
|
|
|
|
|
group.push(this.cells[Math.floor(Math.random() * this.cells.length)]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
configuration.push(group);
|
|
|
|
|
}
|
|
|
|
|
return configuration;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
crossover(parent1, parent2) {
|
|
|
|
|
// Simple two-point crossover with repair
|
|
|
|
|
const length = parent1.length;
|
|
|
|
|
|
|
|
|
|
// 50% chance to just return a copy of one parent (with shuffle)
|
|
|
|
|
if (Math.random() < 0.5) {
|
|
|
|
|
const child = [...parent1];
|
|
|
|
|
// Swap a few random positions
|
|
|
|
|
for (let i = 0; i < 2; i++) {
|
|
|
|
|
const a = Math.floor(Math.random() * length);
|
|
|
|
|
const b = Math.floor(Math.random() * length);
|
|
|
|
|
[child[a], child[b]] = [child[b], child[a]];
|
|
|
|
|
}
|
|
|
|
|
return child;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Otherwise, take half from each parent and repair duplicates
|
|
|
|
|
const midpoint = Math.floor(length / 2);
|
|
|
|
|
const child = [...parent1.slice(0, midpoint), ...parent2.slice(midpoint)];
|
|
|
|
|
|
|
|
|
|
// Find and fix duplicates
|
|
|
|
|
const seen = new Set();
|
|
|
|
|
const duplicatePositions = [];
|
|
|
|
|
const allIndices = new Set(parent1.concat(parent2));
|
|
|
|
|
|
|
|
|
|
for (let i = 0; i < child.length; i++) {
|
|
|
|
|
if (seen.has(child[i])) {
|
|
|
|
|
duplicatePositions.push(i);
|
|
|
|
|
} else {
|
|
|
|
|
seen.add(child[i]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Find missing indices
|
|
|
|
|
const missing = [];
|
|
|
|
|
for (const idx of allIndices) {
|
|
|
|
|
if (!seen.has(idx)) {
|
|
|
|
|
missing.push(idx);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Replace duplicates with missing values
|
|
|
|
|
for (let i = 0; i < duplicatePositions.length && i < missing.length; i++) {
|
|
|
|
|
child[duplicatePositions[i]] = missing[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return child;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
mutate(indices, unusedCells) {
|
|
|
|
|
const mutated = [...indices];
|
|
|
|
|
|
|
|
|
|
if (Math.random() < this.mutationRate) {
|
|
|
|
|
if (unusedCells.length > 0 && Math.random() < 0.3) {
|
|
|
|
|
const replaceIdx = Math.floor(Math.random() * mutated.length);
|
|
|
|
|
const unusedCell = unusedCells[Math.floor(Math.random() * unusedCells.length)];
|
|
|
|
|
const unusedIdx = this.cells.findIndex(c => c.label === unusedCell.label);
|
|
|
|
|
mutated[replaceIdx] = unusedIdx;
|
|
|
|
|
} else {
|
|
|
|
|
const i = Math.floor(Math.random() * mutated.length);
|
|
|
|
|
const j = Math.floor(Math.random() * mutated.length);
|
|
|
|
|
[mutated[i], mutated[j]] = [mutated[j], mutated[i]];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return mutated;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
run() {
|
|
|
|
|
// Initialize population
|
|
|
|
|
let population = [];
|
|
|
|
|
for (let i = 0; i < this.populationSize; i++) {
|
|
|
|
|
population.push(this.createIndividual(this.cells));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Evaluate initial population
|
|
|
|
|
let evaluated = population.map(config => ({
|
|
|
|
|
config,
|
|
|
|
|
indices: this.configToIndices(config),
|
|
|
|
|
...calculateScore(config, this.capacityWeight, this.irWeight)
|
|
|
|
|
}));
|
|
|
|
|
|
|
|
|
|
evaluated.sort((a, b) => a.score - b.score);
|
|
|
|
|
|
|
|
|
|
if (evaluated[0].score < this.bestScore) {
|
|
|
|
|
this.bestScore = evaluated[0].score;
|
|
|
|
|
this.bestSolution = evaluated[0];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Calculate total combinations for display
|
|
|
|
|
const totalCombinations = this.factorial(this.cells.length) /
|
|
|
|
|
(this.factorial(this.cells.length - this.totalCellsNeeded) *
|
|
|
|
|
Math.pow(this.factorial(this.parallel), this.serial) *
|
|
|
|
|
this.factorial(this.serial));
|
|
|
|
|
|
|
|
|
|
// Main evolution loop
|
|
|
|
|
for (let iteration = 0; iteration < this.maxIterations && !this.stopped; iteration++) {
|
|
|
|
|
const newPopulation = [];
|
|
|
|
|
|
|
|
|
|
// Keep elite individuals
|
|
|
|
|
for (let i = 0; i < this.eliteCount && i < evaluated.length; i++) {
|
|
|
|
|
newPopulation.push(evaluated[i].indices);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Generate rest through crossover and mutation
|
|
|
|
|
while (newPopulation.length < this.populationSize) {
|
|
|
|
|
const tournament1 = evaluated.slice(0, Math.ceil(evaluated.length / 2));
|
|
|
|
|
const tournament2 = evaluated.slice(0, Math.ceil(evaluated.length / 2));
|
|
|
|
|
const parent1 = tournament1[Math.floor(Math.random() * tournament1.length)];
|
|
|
|
|
const parent2 = tournament2[Math.floor(Math.random() * tournament2.length)];
|
|
|
|
|
|
|
|
|
|
let child = this.crossover(parent1.indices, parent2.indices);
|
|
|
|
|
|
|
|
|
|
// Safety: ensure all indices are valid
|
|
|
|
|
child = child.map(idx => {
|
|
|
|
|
if (idx >= 0 && idx < this.cells.length) return idx;
|
|
|
|
|
return Math.floor(Math.random() * this.cells.length);
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
const usedLabels = new Set(child.map(idx => this.cells[idx].label));
|
|
|
|
|
const unusedCells = this.cells.filter(c => !usedLabels.has(c.label));
|
|
|
|
|
|
|
|
|
|
child = this.mutate(child, unusedCells);
|
|
|
|
|
newPopulation.push(child);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Evaluate new population
|
|
|
|
|
evaluated = newPopulation.map(indices => {
|
|
|
|
|
const config = this.indicesToConfig(indices);
|
|
|
|
|
return {
|
|
|
|
|
config,
|
|
|
|
|
indices,
|
|
|
|
|
...calculateScore(config, this.capacityWeight, this.irWeight)
|
|
|
|
|
};
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
evaluated.sort((a, b) => a.score - b.score);
|
|
|
|
|
|
|
|
|
|
if (evaluated[0].score < this.bestScore) {
|
|
|
|
|
this.bestScore = evaluated[0].score;
|
|
|
|
|
this.bestSolution = evaluated[0];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
this.stats.recordIteration();
|
|
|
|
|
|
|
|
|
|
// Send progress update every 10 iterations
|
|
|
|
|
if (iteration % 10 === 0 || iteration === this.maxIterations - 1) {
|
|
|
|
|
const stats = this.stats.getStats(iteration, this.maxIterations);
|
|
|
|
|
|
|
|
|
|
self.postMessage({
|
|
|
|
|
type: 'progress',
|
|
|
|
|
data: {
|
|
|
|
|
iteration,
|
|
|
|
|
maxIterations: this.maxIterations,
|
|
|
|
|
bestScore: this.bestScore,
|
|
|
|
|
currentBest: this.bestSolution,
|
|
|
|
|
totalCombinations,
|
|
|
|
|
evaluatedCombinations: (iteration + 1) * this.populationSize,
|
|
|
|
|
...stats
|
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const usedLabels = new Set(this.bestSolution.config.flat().map(c => c.label));
|
|
|
|
|
const excludedCells = this.cells.filter(c => !usedLabels.has(c.label));
|
|
|
|
|
|
|
|
|
|
return {
|
|
|
|
|
configuration: this.bestSolution.config,
|
|
|
|
|
score: this.bestScore,
|
|
|
|
|
capacityCV: this.bestSolution.capacityCV,
|
|
|
|
|
irCV: this.bestSolution.irCV,
|
|
|
|
|
groupCapacities: this.bestSolution.groupCapacities,
|
|
|
|
|
excludedCells,
|
|
|
|
|
iterations: this.maxIterations,
|
|
|
|
|
elapsedTime: Date.now() - this.stats.startTime
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
factorial(n) {
|
|
|
|
|
if (n <= 1) return 1;
|
|
|
|
|
if (n > 20) return Infinity; // Prevent overflow
|
|
|
|
|
let result = 1;
|
|
|
|
|
for (let i = 2; i <= n; i++) result *= i;
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// =============================================================================
|
|
|
|
|
// Simulated Annealing
|
|
|
|
|
// =============================================================================
|
|
|
|
|
|
|
|
|
|
class SimulatedAnnealing {
|
|
|
|
|
constructor(cells, serial, parallel, options = {}) {
|
|
|
|
|
this.cells = cells;
|
|
|
|
|
this.serial = serial;
|
|
|
|
|
this.parallel = parallel;
|
|
|
|
|
this.totalCellsNeeded = serial * parallel;
|
|
|
|
|
|
|
|
|
|
this.maxIterations = options.maxIterations || 5000;
|
|
|
|
|
this.initialTemp = options.initialTemp || 100;
|
|
|
|
|
this.coolingRate = options.coolingRate || 0.995;
|
|
|
|
|
this.capacityWeight = options.capacityWeight ?? 0.7;
|
|
|
|
|
this.irWeight = options.irWeight ?? 0.3;
|
|
|
|
|
|
|
|
|
|
this.stopped = false;
|
|
|
|
|
this.bestSolution = null;
|
|
|
|
|
this.bestScore = Infinity;
|
|
|
|
|
this.stats = new StatsTracker();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
stop() {
|
|
|
|
|
this.stopped = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
createInitialConfig() {
|
|
|
|
|
const shuffled = shuffleArray([...this.cells]).slice(0, this.totalCellsNeeded);
|
|
|
|
|
const configuration = [];
|
|
|
|
|
|
|
|
|
|
for (let i = 0; i < this.serial; i++) {
|
|
|
|
|
const group = [];
|
|
|
|
|
for (let j = 0; j < this.parallel; j++) {
|
|
|
|
|
group.push(shuffled[i * this.parallel + j]);
|
|
|
|
|
}
|
|
|
|
|
configuration.push(group);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return configuration;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
getNeighbor(config) {
|
|
|
|
|
const newConfig = cloneConfiguration(config);
|
|
|
|
|
const usedLabels = new Set(config.flat().map(c => c.label));
|
|
|
|
|
const unusedCells = this.cells.filter(c => !usedLabels.has(c.label));
|
|
|
|
|
|
|
|
|
|
const moveType = Math.random();
|
|
|
|
|
|
|
|
|
|
if (unusedCells.length > 0 && moveType < 0.3) {
|
|
|
|
|
const groupIdx = Math.floor(Math.random() * this.serial);
|
|
|
|
|
const cellIdx = Math.floor(Math.random() * this.parallel);
|
|
|
|
|
const unusedCell = unusedCells[Math.floor(Math.random() * unusedCells.length)];
|
|
|
|
|
newConfig[groupIdx][cellIdx] = unusedCell;
|
|
|
|
|
} else if (moveType < 0.65) {
|
|
|
|
|
const group1 = Math.floor(Math.random() * this.serial);
|
|
|
|
|
let group2 = Math.floor(Math.random() * this.serial);
|
|
|
|
|
while (group2 === group1 && this.serial > 1) {
|
|
|
|
|
group2 = Math.floor(Math.random() * this.serial);
|
|
|
|
|
}
|
|
|
|
|
const cell1 = Math.floor(Math.random() * this.parallel);
|
|
|
|
|
const cell2 = Math.floor(Math.random() * this.parallel);
|
|
|
|
|
|
|
|
|
|
const temp = newConfig[group1][cell1];
|
|
|
|
|
newConfig[group1][cell1] = newConfig[group2][cell2];
|
|
|
|
|
newConfig[group2][cell2] = temp;
|
|
|
|
|
} else {
|
|
|
|
|
const groupIdx = Math.floor(Math.random() * this.serial);
|
|
|
|
|
if (this.parallel >= 2) {
|
|
|
|
|
const cell1 = Math.floor(Math.random() * this.parallel);
|
|
|
|
|
let cell2 = Math.floor(Math.random() * this.parallel);
|
|
|
|
|
while (cell2 === cell1) {
|
|
|
|
|
cell2 = Math.floor(Math.random() * this.parallel);
|
|
|
|
|
}
|
|
|
|
|
const temp = newConfig[groupIdx][cell1];
|
|
|
|
|
newConfig[groupIdx][cell1] = newConfig[groupIdx][cell2];
|
|
|
|
|
newConfig[groupIdx][cell2] = temp;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return newConfig;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
run() {
|
|
|
|
|
let current = this.createInitialConfig();
|
|
|
|
|
let currentScore = calculateScore(current, this.capacityWeight, this.irWeight);
|
|
|
|
|
|
|
|
|
|
this.bestSolution = { config: cloneConfiguration(current), ...currentScore };
|
|
|
|
|
this.bestScore = currentScore.score;
|
|
|
|
|
|
|
|
|
|
let temperature = this.initialTemp;
|
|
|
|
|
let acceptedMoves = 0;
|
|
|
|
|
let totalMoves = 0;
|
|
|
|
|
|
|
|
|
|
for (let iteration = 0; iteration < this.maxIterations && !this.stopped; iteration++) {
|
|
|
|
|
const neighbor = this.getNeighbor(current);
|
|
|
|
|
const neighborScore = calculateScore(neighbor, this.capacityWeight, this.irWeight);
|
|
|
|
|
|
|
|
|
|
const delta = neighborScore.score - currentScore.score;
|
|
|
|
|
totalMoves++;
|
|
|
|
|
|
|
|
|
|
if (delta < 0 || Math.random() < Math.exp(-delta / temperature)) {
|
|
|
|
|
current = neighbor;
|
|
|
|
|
currentScore = neighborScore;
|
|
|
|
|
acceptedMoves++;
|
|
|
|
|
|
|
|
|
|
if (currentScore.score < this.bestScore) {
|
|
|
|
|
this.bestScore = currentScore.score;
|
|
|
|
|
this.bestSolution = { config: cloneConfiguration(current), ...currentScore };
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
temperature *= this.coolingRate;
|
|
|
|
|
this.stats.recordIteration();
|
|
|
|
|
|
|
|
|
|
if (iteration % 50 === 0 || iteration === this.maxIterations - 1) {
|
|
|
|
|
const stats = this.stats.getStats(iteration, this.maxIterations);
|
|
|
|
|
|
|
|
|
|
self.postMessage({
|
|
|
|
|
type: 'progress',
|
|
|
|
|
data: {
|
|
|
|
|
iteration,
|
|
|
|
|
maxIterations: this.maxIterations,
|
|
|
|
|
bestScore: this.bestScore,
|
|
|
|
|
currentBest: this.bestSolution,
|
|
|
|
|
temperature,
|
|
|
|
|
acceptanceRate: totalMoves > 0 ? (acceptedMoves / totalMoves * 100) : 0,
|
|
|
|
|
evaluatedCombinations: iteration + 1,
|
|
|
|
|
...stats
|
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const usedLabels = new Set(this.bestSolution.config.flat().map(c => c.label));
|
|
|
|
|
const excludedCells = this.cells.filter(c => !usedLabels.has(c.label));
|
|
|
|
|
|
|
|
|
|
return {
|
|
|
|
|
configuration: this.bestSolution.config,
|
|
|
|
|
score: this.bestScore,
|
|
|
|
|
capacityCV: this.bestSolution.capacityCV,
|
|
|
|
|
irCV: this.bestSolution.irCV,
|
|
|
|
|
groupCapacities: this.bestSolution.groupCapacities,
|
|
|
|
|
excludedCells,
|
|
|
|
|
iterations: this.maxIterations,
|
|
|
|
|
elapsedTime: Date.now() - this.stats.startTime
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// =============================================================================
|
|
|
|
|
// Exhaustive Search
|
|
|
|
|
// =============================================================================
|
|
|
|
|
|