Files
LiXX_Cell_Pack_Matcher/js/matching-worker.js
localhorst 515fc24f1d Rewrite as static webapp (#1)
Reviewed-on: #1
Co-authored-by: localhorst <localhorst@mosad.xyz>
Co-committed-by: localhorst <localhorst@mosad.xyz>
2025-12-21 09:21:09 +01:00

380 lines
12 KiB
JavaScript

/**
* LiXX Cell Pack Matcher - Web Worker
*
* Runs matching algorithms in a background thread to keep the UI responsive.
* Communicates with the main thread via postMessage.
*/
// =============================================================================
// Utility Functions
// =============================================================================
/**
* Calculate the coefficient of variation (CV) as a percentage.
*/
function coefficientOfVariation(values) {
if (!values || values.length === 0) return 0;
const mean = values.reduce((a, b) => a + b, 0) / values.length;
if (mean === 0) return 0;
const variance = values.reduce((acc, val) => acc + Math.pow(val - mean, 2), 0) / values.length;
return (Math.sqrt(variance) / mean) * 100;
}
/**
* Shuffle array in place using Fisher-Yates algorithm.
*/
function shuffleArray(array) {
for (let i = array.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[array[i], array[j]] = [array[j], array[i]];
}
return array;
}
/**
* Deep clone an array of arrays.
*/
function cloneConfiguration(arr) {
return arr.map(group => [...group]);
}
/**
* Shuffle cells based on random
*/
function shuffleCells(cells) {
const shuffled = [...cells];
for (let i = shuffled.length - 1; i > 0; i--) {
const j = Math.floor(Math.random() * (i + 1));
[shuffled[i], shuffled[j]] = [shuffled[j], shuffled[i]];
}
return shuffled;
}
// =============================================================================
// Scoring Functions
// =============================================================================
/**
* Calculate the match score for a pack configuration.
* Lower score = better match.
*/
function calculateScore(configuration, capacityWeight = 0.7, irWeight = 0.3) {
const groupCapacities = configuration.map(group =>
group.reduce((sum, cell) => sum + cell.capacity, 0)
);
const groupIRs = configuration.map(group => {
const irsWithValues = group.filter(cell => cell.ir !== null && cell.ir !== undefined);
if (irsWithValues.length === 0) return null;
return irsWithValues.reduce((sum, cell) => sum + cell.ir, 0) / irsWithValues.length;
}).filter(ir => ir !== null);
const withinGroupIRVariances = configuration.map(group => {
const irsWithValues = group.filter(cell => cell.ir !== null && cell.ir !== undefined);
if (irsWithValues.length < 2) return 0;
const irs = irsWithValues.map(cell => cell.ir);
return coefficientOfVariation(irs);
});
const capacityCV = coefficientOfVariation(groupCapacities);
const avgWithinGroupIRCV = withinGroupIRVariances.length > 0
? withinGroupIRVariances.reduce((a, b) => a + b, 0) / withinGroupIRVariances.length
: 0;
const score = (capacityWeight * capacityCV) + (irWeight * avgWithinGroupIRCV);
return {
score,
capacityCV,
irCV: avgWithinGroupIRCV,
groupCapacities,
groupIRs,
withinGroupIRVariances
};
}
// =============================================================================
// Statistics Tracker
// =============================================================================
class StatsTracker {
constructor() {
this.startTime = Date.now();
this.lastProgressTime = this.startTime;
this.lastProgressIteration = 0;
this.speedHistory = [];
this.windowSize = 5; // Rolling window for speed averaging
this.lastEta = null;
this.lastEtaUpdate = 0;
}
getStats(currentIteration, maxIterations) {
const now = Date.now();
const elapsedTime = now - this.startTime;
// Calculate speed based on iterations since last progress update
const iterationsDelta = currentIteration - this.lastProgressIteration;
const timeDelta = now - this.lastProgressTime;
if (timeDelta > 0 && iterationsDelta > 0) {
const currentSpeed = (iterationsDelta / timeDelta) * 1000; // iterations per second
this.speedHistory.push(currentSpeed);
if (this.speedHistory.length > this.windowSize) {
this.speedHistory.shift();
}
}
this.lastProgressTime = now;
this.lastProgressIteration = currentIteration;
// Average speed from history
const avgSpeed = this.speedHistory.length > 0
? this.speedHistory.reduce((a, b) => a + b, 0) / this.speedHistory.length
: 0;
const remainingIterations = maxIterations - currentIteration;
const eta = avgSpeed > 0 ? (remainingIterations / avgSpeed) * 1000 : 0;
// Only update ETA every 500ms to avoid flickering
if (now - this.lastEtaUpdate > 500 || this.lastEta === null) {
this.lastEta = eta;
this.lastEtaUpdate = now;
}
return {
elapsedTime,
eta: this.lastEta,
iterationsPerSecond: avgSpeed
};
}
}
// =============================================================================
// Exhaustive Search
// =============================================================================
class ExhaustiveSearch {
constructor(cells, serial, parallel, options = {}) {
this.cells = shuffleCells(cells);
this.serial = serial;
this.parallel = parallel;
this.totalCellsNeeded = serial * parallel;
this.capacityWeight = options.capacityWeight ?? 0.7;
this.irWeight = options.irWeight ?? 0.3;
this.maxIterations = options.maxIterations || 100000;
this.stopped = false;
this.bestSolution = null;
this.bestScore = Infinity;
this.stats = new StatsTracker();
}
stop() {
console.log("ExhaustiveSearch: stop requested")
this.stopped = true;
}
*combinations(array, k) {
if (k === 0) {
yield [];
return;
}
if (array.length < k) return;
const [first, ...rest] = array;
for (const combo of this.combinations(rest, k - 1)) {
yield [first, ...combo];
}
yield* this.combinations(rest, k);
}
*generatePartitions(cells, groupSize, numGroups) {
if (numGroups === 0) {
yield [];
return;
}
if (cells.length < groupSize * numGroups) return;
for (const group of this.combinations(cells, groupSize)) {
const remaining = cells.filter(c => !group.includes(c));
for (const rest of this.generatePartitions(remaining, groupSize, numGroups - 1)) {
yield [group, ...rest];
}
}
}
calculateTotalCombinations() {
// Formula: C(n, k) * C(n-k, k) * ... / numGroups! for identical groups
const n = this.cells.length;
const k = this.parallel;
const numGroups = this.serial;
let total = 1;
let remaining = n;
for (let i = 0; i < numGroups; i++) {
total *= this.binomial(remaining, k);
remaining -= k;
}
// Divide by numGroups! if groups are interchangeable
// (but for battery packs, position matters, so we don't divide)
return total;
}
binomial(n, k) {
if (k > n) return 0;
if (k === 0 || k === n) return 1;
let result = 1;
for (let i = 0; i < k; i++) {
result = result * (n - i) / (i + 1);
}
return Math.round(result);
}
run() {
let iteration = 0;
const totalCombinations = this.calculateTotalCombinations();
const cellCombos = this.cells.length > this.totalCellsNeeded
? this.combinations(this.cells, this.totalCellsNeeded)
: [[...this.cells]];
for (const cellSubset of cellCombos) {
if (this.stopped) {
return this.returnBestResult(iteration, totalCombinations);
}
for (const partition of this.generatePartitions(cellSubset, this.parallel, this.serial)) {
if (this.stopped) {
return this.returnBestResult(iteration, totalCombinations);
}
const scoreResult = calculateScore(partition, this.capacityWeight, this.irWeight);
if (scoreResult.score < this.bestScore) {
this.bestScore = scoreResult.score;
this.bestSolution = { config: partition, ...scoreResult };
}
iteration++;
// Check for stop every 100 iterations, but only send progress updates every 200ms
if (iteration % 100 === 0) {
const now = Date.now();
const timeSinceLastProgress = now - this.stats.lastProgressTime;
if (timeSinceLastProgress >= 200) {
const stats = this.stats.getStats(iteration, Math.min(totalCombinations, this.maxIterations));
self.postMessage({
type: 'progress',
data: {
iteration,
maxIterations: Math.min(totalCombinations, this.maxIterations),
bestScore: this.bestScore,
currentBest: this.bestSolution,
totalCombinations,
evaluatedCombinations: iteration,
...stats
}
});
}
}
if (iteration >= this.maxIterations) {
return this.returnBestResult(iteration, totalCombinations);
}
}
}
return this.returnBestResult(iteration, totalCombinations);
}
returnBestResult(iteration, totalCombinations) {
if (!this.bestSolution) {
// No solution found yet, create one from first cells
const config = [];
for (let i = 0; i < this.serial; i++) {
config.push(this.cells.slice(i * this.parallel, (i + 1) * this.parallel));
}
const scoreResult = calculateScore(config, this.capacityWeight, this.irWeight);
this.bestSolution = { config, ...scoreResult };
this.bestScore = scoreResult.score;
}
const usedLabels = new Set(this.bestSolution.config.flat().map(c => c.label));
const excludedCells = this.cells.filter(c => !usedLabels.has(c.label));
// Final progress update
const stats = this.stats.getStats(iteration, Math.min(totalCombinations, this.maxIterations));
self.postMessage({
type: 'progress',
data: {
iteration,
maxIterations: Math.min(totalCombinations, this.maxIterations),
bestScore: this.bestScore,
currentBest: this.bestSolution,
totalCombinations,
evaluatedCombinations: iteration,
...stats
}
});
return {
configuration: this.bestSolution.config,
score: this.bestScore,
capacityCV: this.bestSolution.capacityCV,
irCV: this.bestSolution.irCV,
groupCapacities: this.bestSolution.groupCapacities,
excludedCells,
iterations: iteration,
elapsedTime: Date.now() - this.stats.startTime
};
}
}
// =============================================================================
// Worker Message Handler
// =============================================================================
let currentAlgorithm = null;
self.onmessage = function (e) {
const { type, data } = e.data;
switch (type) {
case 'start':
const { cells, serial, parallel, algorithm, options } = data;
switch (algorithm) {
case 'exhaustive':
currentAlgorithm = new ExhaustiveSearch(cells, serial, parallel, options);
break;
}
try {
const result = currentAlgorithm.run();
self.postMessage({ type: 'complete', data: result });
} catch (error) {
self.postMessage({ type: 'error', data: error.message });
}
currentAlgorithm = null;
break;
case 'stop':
console.log("Algo: Stop requested")
if (currentAlgorithm) {
currentAlgorithm.stop();
}
break;
}
};