WIP: feature/esp32-ng-basic #1

Draft
localhorst wants to merge 22 commits from feature/esp32-ng-basic into master
21 changed files with 4707 additions and 326 deletions

294
.gitignore vendored Normal file
View File

@ -0,0 +1,294 @@
# ---> esp-idf
# gitignore template for esp-idf, the official development framework for ESP32
# https://github.com/espressif/esp-idf
build/
sdkconfig.old
# ---> VisualStudioCode
.vscode/*
!.vscode/settings.json
!.vscode/tasks.json
!.vscode/launch.json
!.vscode/extensions.json
!.vscode/*.code-snippets
# Local History for Visual Studio Code
.history/
# Built Visual Studio Code Extensions
*.vsix
# ---> Python
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
# ---> esp-idf
# gitignore template for esp-idf, the official development framework for ESP32
# https://github.com/espressif/esp-idf
build/
sdkconfig.old
# ---> CMake
CMakeLists.txt.user
CMakeCache.txt
CMakeFiles
CMakeScripts
Testing
Makefile
cmake_install.cmake
install_manifest.txt
compile_commands.json
CTestTestfile.cmake
_deps
# ---> C
# Prerequisites
*.d
# Object files
*.o
*.ko
*.obj
*.elf
# Linker output
*.ilk
*.map
*.exp
# Precompiled Headers
*.gch
*.pch
# Libraries
*.lib
*.a
*.la
*.lo
# Shared objects (inc. Windows DLLs)
*.dll
*.so
*.so.*
*.dylib
# Executables
*.exe
*.out
*.app
*.i*86
*.x86_64
*.hex
# Debug files
*.dSYM/
*.su
*.idb
*.pdb
# Kernel Module Compile Results
*.mod*
*.cmd
.tmp_versions/
modules.order
Module.symvers
Mkfile.old
dkms.conf
# ---> C++
# Prerequisites
*.d
# Compiled Object files
*.slo
*.lo
*.o
*.obj
# Precompiled Headers
*.gch
*.pch
# Compiled Dynamic libraries
*.so
*.dylib
*.dll
# Fortran module files
*.mod
*.smod
# Compiled Static libraries
*.lai
*.la
*.a
*.lib
# Executables
*.exe
*.out
*.app
.vscode/settings.json
sdkconfig.defaults
.clangd

5
CMakeLists.txt Normal file
View File

@ -0,0 +1,5 @@
# ESP32 LED Controller Firmware
cmake_minimum_required(VERSION 3.16)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(led_controller)

144
README.md
View File

@ -1,38 +1,124 @@
# WS2812B-LED-RC-Controller
WS2812B Controller for RC plane night flying with spotlight
# ESP32 LED Controller for Model Aircraft
#### Fast overview: Video will come soon.
Professional LED controller firmware for ESP32. Designed for model aircraft with WS2812B LED strips.
[![IMAGE ALT TEXT HERE](https://img.youtube.com/vi//0.jpg)]
(https://www.youtube.com/watch?v=)
## Features
## 1.Hardware:
- Atmel Atmega328p
- WS2812B stirp (got mine from https://www.banggood.com/5M-45W-150SMD-WS2812B-LED-RGB-Colorful-Strip-Light-Waterproof-IP65-WhiteBlack-PCB-DC5V-p-1035640.html)
- 3W 12V LED
- Transistor 2N3904
- Capacitors - 10uF/25V
- Socket for Atmega
- Some servo wires
- Crystal 16MHz
- Capacitor Ceramic 22pF
- PCB of your choice
### Hardware Support
- **ESP32 DevKitC** and **ESP32-C3 MINI** Development Board
- Dual WS2812B LED strip support (configurable GPIOs)
- PWM signal input for RC control
- Real-time LED animation at 60 FPS
## 2.Software:
- get your isp-programmer (ex. USBasp) working, linux is your friend
- install latest Arduino IDE and drivers
- install FastLED https://github.com/FastLED/FastLED
### Animation Modes
1. **Black** - All LEDs off
2. **Red** - Solid red
3. **Blue** - Solid blue
4. **Green** - Solid green
5. **White** - Solid white
6. **Rainbow** - Smooth rainbow gradient
7. **Rainbow with Glitter** - Rainbow with sparkles
8. **Confetti** - Random colored speckles
9. **Sinelon** - Sweeping colored dot with trails
10. **BPM** - Pulsing stripes at 33 BPM
11. **Navigation** - Aviation lights (red left, green right)
12. **Chase (Red)** - Red dot chase effect
13. **Chase (RGB)** - RGB cycling chase effect
14. **Random** - Random LED colors
## 3.Libraries used in this project:
- FastLED from https://github.com/FastLED/FastLED
## Project Structure
### Installation:
1. prepare Hardware. Ground to Ground and the rest like the schematics (comming soon).
2. Upload the sketch to the Arduino with the ISP-Programmer.
3. Set the switches on your RC control for the two channels.
7. Power everything up.
8. Enjoy your WS2812B-LED-RC-Controller
```
led-controller-firmware/
├── main/
│ ├── main.c # Application entry point
│ ├── control.c/h # initialization
│ ├── config.c/h # NVS
│ ├── led.c/h # WS2812B control (RMT driver)
│ ├── rcsignal.c/h # PWM signal reading
│ ├── localbtn.c/h # Local btn reading
│ └── animation.c/h # LED animation patterns
├── CMakeLists.txt
├── sdkconfig.defaults
└── partitions.csv # OTA-enabled partition table
```
Bug and Features: Please report bugs and wishes to me. Thanks!
## Build Instructions
### Prerequisites
1. Install ESP-IDF v5.0 or later
2. For ESP32-C3, ensure RISC-V toolchain is installed
### Building
```bash
cd led-controller-firmware
# For ESP32 DevKitC
idf.py set-target esp32
idf.py build
# For ESP32-C3 MINI
idf.py set-target esp32c3
idf.py build
```
### Flashing
```bash
idf.py -p /dev/ttyUSB0 flash monitor
```
Replace `/dev/ttyUSB0` with your serial port.
## Hardware Setup
### Wiring
```
ESP32 Pin -> Component
----------- ----------
GPIO XX -> WS2812B Strip A Data
GPIO XX -> WS2812B Strip B Data
GPIO XX -> RC PWM Signal
GPIO XX -> Local button Signal
GND -> Common Ground
5V -> LED Strip Power (if current < 500mA)
```
### LED Strips
- **WS2812B** strips require 5V power
- Each LED draws ~60mA at full white
- Use external power supply for >10 LEDs
- Add 100-500µF capacitor near strips
- Add 330Ω resistor on data line
### PWM Signal
- Standard RC PWM: 1000-2000µs pulse width
- 1500µs threshold for mode switching
- Rising edge >1500µs after <1500µs triggers next mode
## Development
### Adding New Animations
1. Add mode to `animation_mode_t` enum in `animation.h`
2. Implement animation function in `animation.c`
3. Add case to `animation_update()` switch statement
### Testing
```bash
# Build and flash
idf.py build flash
# Monitor output
idf.py monitor
# Exit monitor: Ctrl+]
```
## License
See [LICENSE](LICENSE)

View File

@ -1,212 +0,0 @@
boolean getRC01() {
rc01Val = pulseIn(rc01, HIGH);
//Serial.println(rc01Val);
if (rc01Val > 1500) {
//Serial.println("RC1 ON");
return true;
} else {
//Serial.println("RC1 OFF");
return false;
}
}
boolean getRC02() {
rc02Val = pulseIn(rc02, HIGH);
// Serial.println(rc02Val);
if (rc02Val < 1500) {
pullRC = true;
}
if (rc02Val > 1500 && pullRC) {
//Serial.println("RC2 ON");
pullRC = false;
return true;
} else {
//Serial.println("RC2 OFF");
return false;
}
}
void serialPrintModus(int modus) {
switch (modus) {
case 0:
Serial.println("Black");
break;
case 1:
Serial.println("Red");
break;
case 2:
Serial.println("Blue");
break;
case 3:
Serial.println("Green");
break;
case 4:
Serial.println("White");
break;
case 5:
Serial.println("Rainbow");
break;
case 6:
Serial.println("RainbowWithGlitter");
break;
case 7:
Serial.println("Confetti");
break;
case 8:
Serial.println("Sinelon");
break;
case 9:
Serial.println("BPM");
break;
case 10:
Serial.println("Navigation");
break;
case 11:
Serial.println("Chase");
break;
case 12:
Serial.println("ChaseRGB");
break;
case 13:
Serial.println("Random");
break;
}
}
void rainbow()
{
Serial.println("Rainbow");
// FastLED's built-in rainbow generator
fill_rainbow( leds, NUM_LEDS, gHue, 7);
}
void rainbowWithGlitter()
{
// built-in FastLED rainbow, plus some random sparkly glitter
rainbow();
addGlitter(255);
}
void addGlitter( fract8 chanceOfGlitter)
{
if ( random8() < chanceOfGlitter) {
leds[ random16(NUM_LEDS) ] += CRGB::White;
}
}
void confetti()
{
// random colored speckles that blink in and fade smoothly
fadeToBlackBy( leds, NUM_LEDS, 10);
int pos = random16(NUM_LEDS);
leds[pos] += CHSV( gHue + random8(64), 200, 255);
}
void sinelon()
{
// a colored dot sweeping back and forth, with fading trails
fadeToBlackBy( leds, NUM_LEDS, 20);
int pos = beatsin16(13, 0, NUM_LEDS);
leds[pos] += CHSV( gHue, 255, 192);
}
void bpm()
{
// colored stripes pulsing at a defined Beats-Per-Minute (BPM)
uint8_t BeatsPerMinute = 33;
CRGBPalette16 palette = PartyColors_p;
uint8_t beat = beatsin8( BeatsPerMinute, 64, 255);
for ( int i = 0; i < NUM_LEDS; i++) { //9948
leds[i] = ColorFromPalette(palette, gHue + (i * 2), beat - gHue + (i * 10));
}
}
void blackMode() {
fill_solid(leds, NUM_LEDS, CRGB::Black); // Just to be sure, let's really make it BLACK.
}
void redMode() {
fill_solid(leds, NUM_LEDS, CRGB::Red);
}
void blueMode() {
fill_solid(leds, NUM_LEDS, CRGB::Blue);
}
void greenMode() {
fill_solid(leds, NUM_LEDS, CRGB::Green);
}
void whiteMode() {
fill_solid(leds, NUM_LEDS, CRGB::White);
}
void navigation() {
FastLED.clear();
leds[0] = CRGB::Red;
leds[1] = CRGB::Red;
leds[2] = CRGB::Red;
leds[41] = CRGB::Green;
leds[42] = CRGB::Green;
leds[43] = CRGB::Green;
leds[5] = CRGB::White;
leds[6] = CRGB::White;
leds[37] = CRGB::White;
leds[38] = CRGB::White;
FastLED.delay(100);
leds[5] = CRGB::Black;
leds[6] = CRGB::Black;
leds[37] = CRGB::Black;
leds[38] = CRGB::Black;
}
void chase() {
FastLED.clear();
// a colored dot sweeping back and forth, with fading trails
//fadeToBlackBy( leds, NUM_LEDS, 20);
int pos = beatsin16(40, 0, NUM_LEDS);
leds[pos] = CRGB::Red;
if (pos < 41) {
leds[pos + 1] = CRGB::Red;
leds[pos + 2] = CRGB::Red;
}
if (pos > 1) {
leds[pos - 1] = CRGB::Red;
leds[pos - 2] = CRGB::Red;
}
}
void chaseRGB() {
FastLED.clear();
// a colored dot sweeping back and forth, with fading trails
//fadeToBlackBy( leds, NUM_LEDS, 20);
int pos = beatsin16(40, 0, NUM_LEDS);
leds[pos] += CHSV( gHue, 255, 192);
if (pos < 41) {
leds[pos + 1] += CHSV( gHue, 255, 192);
leds[pos + 2] += CHSV( gHue, 255, 192);
}
if (pos > 1) {
leds[pos - 1] += CHSV( gHue, 255, 192);
leds[pos - 2] += CHSV( gHue, 255, 192);
}
}
void randomMode(){
randomVal = random(0,45);
if(randomVal == 44){
if(random(5,11) == 9){
FastLED.clear();
}
}else{
leds[randomVal] = random(0, 16777216);
}
}

11
main/CMakeLists.txt Normal file
View File

@ -0,0 +1,11 @@
idf_component_register(
SRCS
"main.c"
"control.c"
"led.c"
"rcsignal.c"
"animation.c"
"localbtn.c"
"config.c"
INCLUDE_DIRS "."
)

468
main/animation.c Normal file
View File

@ -0,0 +1,468 @@
/**
* @file animation.c
* @brief LED animation patterns implementation
*/
#include "animation.h"
#include "led.h"
#include "esp_log.h"
#include "esp_timer.h"
#include "esp_random.h"
#include <math.h>
static const char *TAG = "ANIMATION";
#define FRAMES_PER_SECOND 60
static animation_mode_t current_mode = ANIM_BLACK;
static uint8_t global_hue = 0;
static uint32_t frame_counter = 0;
// Beat calculation helper
static int16_t beatsin16(uint8_t bpm, int16_t min_val, int16_t max_val)
{
// Use uint64_t to prevent overflow
uint64_t us = esp_timer_get_time(); // Microseconds
// Calculate beat phase (0-65535 repeating at BPM rate)
// beats_per_minute → beats_per_microsecond = bpm / 60,000,000
uint64_t beat_phase = (us * (uint64_t)bpm * 65536ULL) / 60000000ULL;
uint16_t beat16 = (uint16_t)(beat_phase & 0xFFFF);
// Convert to angle (0 to 2π)
float angle = (beat16 / 65535.0f) * 2.0f * M_PI;
float sin_val = sinf(angle);
// Map sin (-1 to +1) to output range (min_val to max_val)
int16_t range = max_val - min_val;
int16_t result = min_val + (int16_t)((sin_val + 1.0f) * range / 2.0f);
return result;
}
// Random helper
static uint8_t random8(void)
{
return esp_random() & 0xFF;
}
static uint16_t random16(uint16_t max)
{
if (max == 0)
return 0;
return esp_random() % max;
}
// Animation implementations
static void anim_black(void)
{
rgb_t black = {0, 0, 0};
led_fill_a(black);
led_fill_b(black);
}
static void anim_red(void)
{
rgb_t red = {255, 0, 0};
led_fill_a(red);
led_fill_b(red);
}
static void anim_blue(void)
{
rgb_t blue = {0, 0, 255};
led_fill_a(blue);
led_fill_b(blue);
}
static void anim_green(void)
{
rgb_t green = {0, 255, 0};
led_fill_a(green);
led_fill_b(green);
}
static void anim_white(void)
{
rgb_t white = {255, 255, 255};
led_fill_a(white);
led_fill_b(white);
}
static void anim_rainbow(void)
{
// Rainbow generator
uint16_t num_leds_a = led_get_num_leds_a();
uint16_t num_leds_b = led_get_num_leds_b();
uint16_t num_leds = num_leds_a + num_leds_b;
for (uint16_t i = 0; i < num_leds; i++)
{
hsv_t hsv = {(uint8_t)(global_hue + (i * 7)), 255, 255};
rgb_t color = led_hsv_to_rgb(hsv);
if (i < num_leds_a)
{
led_set_pixel_a(num_leds_a - i - 1, color);
}
else
{
led_set_pixel_b(i - num_leds_a, color);
}
}
}
static void add_glitter(uint8_t chance_of_glitter)
{
if (random8() < chance_of_glitter)
{
uint16_t num_leds = led_get_num_leds_a() + led_get_num_leds_b();
uint16_t pos = random16(num_leds);
rgb_t white = {255, 255, 255};
if (pos < led_get_num_leds_a())
{
led_add_pixel_a(pos, white);
}
else
{
led_add_pixel_b(pos - led_get_num_leds_a(), white);
}
}
}
static void anim_rainbow_glitter(void)
{
anim_rainbow();
add_glitter(255);
}
static void anim_confetti(void)
{
// Random colored speckles that blink in and fade smoothly
led_fade_to_black(10);
uint16_t num_leds = led_get_num_leds_a() + led_get_num_leds_b();
uint16_t pos = random16(num_leds);
hsv_t hsv = {(uint8_t)(global_hue + random8()), 255, 255};
rgb_t color = led_hsv_to_rgb(hsv);
if (pos < led_get_num_leds_a())
{
led_set_pixel_a(led_get_num_leds_a() - pos - 1, color);
}
else
{
led_set_pixel_b(pos - led_get_num_leds_a(), color);
}
}
static void anim_sinelon(void)
{
// A colored dot sweeping back and forth, with fading trails
led_fade_to_black(20);
uint16_t num_leds = led_get_num_leds_a() + led_get_num_leds_b();
int16_t pos = beatsin16(13, 0, num_leds);
hsv_t hsv = {global_hue, 255, 192};
rgb_t color = led_hsv_to_rgb(hsv);
if (pos < led_get_num_leds_a())
{
led_add_pixel_a(led_get_num_leds_a() - pos - 1, color);
}
else
{
led_add_pixel_b(pos - led_get_num_leds_a(), color);
}
}
static void anim_navigation(void)
{
// Aviation navigation lights with strobe overlay:
// - Red: Port (left) wingtip - steady
// - Green: Starboard (right) wingtip - steady
// - White strobe: Overlays outer nav lights with bright flashes
static uint8_t strobe_counter = 0;
led_clear_all();
uint16_t num_leds_a = led_get_num_leds_a();
uint16_t num_leds_b = led_get_num_leds_b();
rgb_t red = {255, 0, 0};
rgb_t green = {0, 255, 0};
rgb_t white = {255, 255, 255};
// Anti-collision strobe pattern: Double flash at ~1 Hz
// Flash duration: 3 frames (~50ms) for high-intensity effect
bool first_flash = (strobe_counter < 3);
bool second_flash = (strobe_counter >= 7 && strobe_counter < 10);
bool strobe_active = (first_flash || second_flash);
// Port (left) - Red navigation light OR white strobe (outer 3 LEDs of strip A)
if (num_leds_a >= 3)
{
rgb_t color_a = strobe_active ? white : red;
led_set_pixel_a(num_leds_a - 1, color_a);
led_set_pixel_a(num_leds_a - 2, red);
led_set_pixel_a(num_leds_a - 3, red);
}
// Starboard (right) - Green navigation light OR white strobe (outer 3 LEDs of strip B)
if (num_leds_b >= 3)
{
rgb_t color_b = strobe_active ? white : green;
led_set_pixel_b(num_leds_b - 1, color_b);
led_set_pixel_b(num_leds_b - 2, green);
led_set_pixel_b(num_leds_b - 3, green);
}
// Strobe cycle: 90 frames = 1.5 second at 60 FPS
strobe_counter = (strobe_counter + 1) % 90;
}
static void anim_chase(void)
{
// Red dot sweeping with trailing dots
led_clear_all();
uint16_t num_leds_a = led_get_num_leds_a();
uint16_t num_leds_b = led_get_num_leds_b();
uint16_t total_leds = num_leds_a + num_leds_b;
// Get oscillating position across both strips
int16_t center_pos = beatsin16(40, 0, total_leds - 1);
rgb_t red = {255, 0, 0};
// Draw center dot with dimmed trailing dots (3 dots total: center ±1)
for (int8_t offset = -1; offset <= 1; offset++)
{
int16_t led_pos = center_pos + offset;
// Skip if position is out of bounds
if (led_pos < 0 || led_pos >= total_leds)
continue;
// Calculate brightness based on distance from center
uint8_t brightness = (offset == 0) ? 255 : 32; // Center: full, trailing: 12%
// Create dimmed color
rgb_t dimmed_red = {
(red.r * brightness) / 255,
(red.g * brightness) / 255,
(red.b * brightness) / 255};
// Map virtual position to physical LED
if (led_pos < num_leds_a)
{
// Strip A (mirrored: position 0 maps to last LED)
uint16_t strip_a_index = num_leds_a - led_pos - 1;
led_set_pixel_a(strip_a_index, dimmed_red);
}
else
{
// Strip B (direct mapping)
uint16_t strip_b_index = led_pos - num_leds_a;
led_set_pixel_b(strip_b_index, dimmed_red);
}
}
}
static void anim_chase_rgb(void)
{
// RGB cycling dot sweeping with trailing dots
led_clear_all();
uint16_t num_leds_a = led_get_num_leds_a();
uint16_t num_leds_b = led_get_num_leds_b();
uint16_t total_leds = num_leds_a + num_leds_b;
// Get oscillating position across both strips
int16_t center_pos = beatsin16(40, 0, total_leds - 1);
hsv_t hsv = {global_hue, 255, 192};
rgb_t color = led_hsv_to_rgb(hsv);
// Draw center dot with dimmed trailing dots (3 dots total: center ±1)
for (int8_t offset = -1; offset <= 1; offset++)
{
int16_t led_pos = center_pos + offset;
// Skip if position is out of bounds
if (led_pos < 0 || led_pos >= total_leds)
continue;
// Calculate brightness based on distance from center
uint8_t brightness = (offset == 0) ? 255 : 32; // Center: full, trailing: 12%
// Create dimmed color
rgb_t dimmed_color = {
(color.r * brightness) / 255,
(color.g * brightness) / 255,
(color.b * brightness) / 255};
// Map virtual position to physical LED
if (led_pos < num_leds_a)
{
// Strip A (mirrored: position 0 maps to last LED)
uint16_t strip_a_index = num_leds_a - led_pos - 1;
led_set_pixel_a(strip_a_index, dimmed_color);
}
else
{
// Strip B (direct mapping)
uint16_t strip_b_index = led_pos - num_leds_a;
led_set_pixel_b(strip_b_index, dimmed_color);
}
}
}
static void anim_random(void)
{
// Random LEDs get random colors
uint16_t num_leds = led_get_num_leds_a() + led_get_num_leds_b();
uint16_t random_pos = random16(num_leds);
rgb_t random_color = {
0,
0,
0};
// Set random LED to random basis color
switch (random16(3))
{
case 0:
random_color.r = 255;
break;
case 1:
random_color.g = 255;
break;
case 2:
random_color.b = 255;
break;
default:
break;
}
if (random_pos < led_get_num_leds_a())
{
led_set_pixel_a(random_pos, random_color);
}
else
{
led_set_pixel_b(random_pos - led_get_num_leds_a(), random_color);
}
}
esp_err_t animation_init(void)
{
current_mode = ANIM_BLACK;
global_hue = 0U;
frame_counter = 0U;
ESP_LOGI(TAG, "Animation initialized");
return ESP_OK;
}
void animation_set_mode(animation_mode_t mode)
{
if ((mode >= ANIM_MODE_COUNT) || (mode < 0U))
{
mode = ANIM_BLACK;
}
current_mode = mode;
frame_counter = 0U;
ESP_LOGI(TAG, "Animation mode set to: %s", animation_get_mode_name(mode));
}
void animation_update(void)
{
// Update global hue every frame (slowly cycles colors)
frame_counter++;
if (frame_counter % 3 == 0)
{
global_hue++;
}
// Execute current animation
switch (current_mode)
{
case ANIM_BLACK:
anim_black();
break;
case ANIM_RED:
anim_red();
break;
case ANIM_BLUE:
anim_blue();
break;
case ANIM_GREEN:
anim_green();
break;
case ANIM_WHITE:
anim_white();
break;
case ANIM_RAINBOW:
anim_rainbow();
break;
case ANIM_RAINBOW_GLITTER:
anim_rainbow_glitter();
break;
case ANIM_CONFETTI:
anim_confetti();
break;
case ANIM_SINELON:
anim_sinelon();
break;
case ANIM_NAVIGATION:
anim_navigation();
break;
case ANIM_CHASE:
anim_chase();
break;
case ANIM_CHASE_RGB:
anim_chase_rgb();
break;
case ANIM_RANDOM:
anim_random();
break;
default:
anim_black();
break;
}
led_show();
}
const char *animation_get_mode_name(animation_mode_t mode)
{
static const char *mode_names[] = {
"Black",
"Red",
"Blue",
"Green",
"White",
"Rainbow",
"Rainbow with Glitter",
"Confetti",
"Sinelon",
"Navigation",
"Chase",
"Chase RGB",
"Random"};
if (mode >= ANIM_MODE_COUNT)
{
return "Unknown";
}
return mode_names[mode];
}

57
main/animation.h Normal file
View File

@ -0,0 +1,57 @@
/**
* @file animation.h
* @brief LED animation patterns
*/
#ifndef ANIMATION_H
#define ANIMATION_H
#include "esp_err.h"
#include <stdint.h>
/**
* @brief Animation modes
*/
typedef enum {
ANIM_BLACK = 0, // All off
ANIM_RED = 1, // All red
ANIM_BLUE = 2, // All blue
ANIM_GREEN = 3, // All green
ANIM_WHITE = 4, // All white
ANIM_RAINBOW = 5, // FastLED rainbow
ANIM_RAINBOW_GLITTER = 6, // Rainbow with glitter
ANIM_CONFETTI = 7, // Random colored speckles
ANIM_SINELON = 8, // Colored dot sweeping (RGB cycling)
ANIM_NAVIGATION = 9, // Navigation lights (red left, green right)
ANIM_CHASE = 10, // Red dot sweeping
ANIM_CHASE_RGB = 11, // RGB cycling dot sweeping
ANIM_RANDOM = 12, // Random mode
ANIM_MODE_COUNT
} animation_mode_t;
/**
* @brief Initialize animation system
* @return ESP_OK on success
*/
esp_err_t animation_init(void);
/**
* @brief Set current animation mode
* @param mode Animation mode
*/
void animation_set_mode(animation_mode_t mode);
/**
* @brief Update animation (call periodically, e.g., 30-60 FPS)
*/
void animation_update(void);
/**
* @brief Get animation mode name
* @param mode Animation mode
* @return Mode name string
*/
const char *animation_get_mode_name(animation_mode_t mode);
#endif // ANIMATION_H

199
main/config.c Normal file
View File

@ -0,0 +1,199 @@
/**
* @file config.c
* @brief Config module implementation
*/
#include "config.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_log.h"
#include "esp_system.h"
#include "nvs_flash.h"
#include "nvs.h"
#include "soc/gpio_num.h"
#include "mbedtls/sha256.h"
#include <string.h>
static const char *TAG = "CONFIG";
#define NVS_NAMESPACE "led_ctrl"
#define HARDCODED_CONFIG
#ifdef HARDCODED_CONFIG
#define HARDCODED_CONFIG_LED_STRIP_A_PIN 3U
#define HARDCODED_CONFIG_LED_STRIP_B_PIN 2U
#define HARDCODED_CONFIG_LED_STRIP_A_COUNT 10U
#define HARDCODED_CONFIG_LED_STRIP_B_COUNT 10U
#define HARDCODED_CONFIG_PWM_PIN 1U
#if defined(CONFIG_IDF_TARGET_ESP32C3)
#define HARDCODED_CONFIG_LOCALBTN_PIN 9
#elif defined(CONFIG_IDF_TARGET_ESP32)
#define HARDCODED_CONFIG_LOCALBTN_PIN 0
#else
#error "Unsupported target: BOOT button GPIO not defined"
#endif
#endif
// Global state
static config_t current_config = {
.led_pin_strip_a = -1,
.led_pin_strip_b = -1,
.led_count_strip_a = -1,
.led_count_strip_b = -1,
.pwm_pin = -1,
.localBtn_pin = -1};
static void calculate_config_hash(const config_t *cfg, uint8_t *out_hash);
// NVS Functions
static esp_err_t load_config_from_nvs(void)
{
nvs_handle_t nvs_handle;
size_t size = sizeof(config_t);
config_t tmp;
for (uint8_t i = 0; i < 2U; i++)
{
esp_err_t err = nvs_open(NVS_NAMESPACE, NVS_READONLY, &nvs_handle);
if (err != ESP_OK)
{
ESP_LOGW(TAG, "NVS not found, using defaults");
config_reset_config();
continue;
}
err = nvs_get_blob(nvs_handle, "config", &tmp, &size);
nvs_close(nvs_handle);
uint8_t calc_hash[CONFIG_HASH_LEN];
calculate_config_hash(&tmp, calc_hash);
if (memcmp(calc_hash, tmp.hash, CONFIG_HASH_LEN) != 0)
{
ESP_LOGW(TAG, "Invalid config in NVS, using defaults");
config_reset_config();
continue;
}
// We found a valid config
break;
}
ESP_LOGI(TAG, "Loaded config from NVS");
ESP_LOGI(TAG, " Strip A: GPIO%d", current_config.led_pin_strip_a);
ESP_LOGI(TAG, " Strip B: GPIO%d", current_config.led_pin_strip_b);
ESP_LOGI(TAG, " Strip A LED count: %d", current_config.led_count_strip_a);
ESP_LOGI(TAG, " Strip B LED count: %d", current_config.led_count_strip_b);
ESP_LOGI(TAG, " PWM Pin: GPIO%d", current_config.pwm_pin);
ESP_LOGI(TAG, " Local btn Pin: GPIO%d", current_config.localBtn_pin);
return ESP_OK;
}
static esp_err_t save_config_to_nvs(void)
{
calculate_config_hash(&current_config, current_config.hash);
nvs_handle_t nvs_handle;
esp_err_t err = nvs_open(NVS_NAMESPACE, NVS_READWRITE, &nvs_handle);
if (err != ESP_OK)
{
return err;
}
err = nvs_set_blob(nvs_handle, "config", &current_config, sizeof(config_t));
if (err == ESP_OK)
{
err = nvs_commit(nvs_handle);
}
nvs_close(nvs_handle);
if (err == ESP_OK)
{
ESP_LOGI(TAG, "Config saved to NVS");
}
else
{
ESP_LOGE(TAG, "Failed to save config: %s", esp_err_to_name(err));
}
return err;
}
esp_err_t config_reset_config(void)
{
current_config.led_pin_strip_a = -1;
current_config.led_pin_strip_b = -1;
current_config.led_count_strip_a = -1;
current_config.led_count_strip_b = -1;
current_config.pwm_pin = -1;
current_config.localBtn_pin = -1;
return save_config_to_nvs();
}
void config_get_config(config_t *const cnf)
{
cnf->led_pin_strip_a = current_config.led_pin_strip_a;
cnf->led_pin_strip_b = current_config.led_pin_strip_b;
cnf->led_count_strip_a = current_config.led_count_strip_a;
cnf->led_count_strip_b = current_config.led_count_strip_b;
cnf->pwm_pin = current_config.pwm_pin;
cnf->localBtn_pin = current_config.localBtn_pin;
}
esp_err_t config_init(void)
{
esp_err_t ret;
ESP_LOGI(TAG, "Initializing Config...");
// Initialize NVS
ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND)
{
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
ESP_ERROR_CHECK(config_reset_config());
}
ESP_ERROR_CHECK(ret);
#ifdef HARDCODED_CONFIG
current_config.led_pin_strip_a = HARDCODED_CONFIG_LED_STRIP_A_PIN;
current_config.led_pin_strip_b = HARDCODED_CONFIG_LED_STRIP_B_PIN;
current_config.led_count_strip_a = HARDCODED_CONFIG_LED_STRIP_A_COUNT;
current_config.led_count_strip_b = HARDCODED_CONFIG_LED_STRIP_B_COUNT;
current_config.pwm_pin = HARDCODED_CONFIG_PWM_PIN;
current_config.localBtn_pin = HARDCODED_CONFIG_LOCALBTN_PIN;
save_config_to_nvs();
#endif
// Load configuration
load_config_from_nvs();
ESP_LOGI(TAG, "Config initialized successfully");
return ESP_OK;
}
static void calculate_config_hash(const config_t *cfg, uint8_t *out_hash)
{
mbedtls_sha256_context ctx;
mbedtls_sha256_init(&ctx);
mbedtls_sha256_starts(&ctx, 0); // 0 = SHA-256, 1 = SHA-224
mbedtls_sha256_update(
&ctx,
(const unsigned char *)cfg,
offsetof(config_t, hash));
mbedtls_sha256_finish(&ctx, out_hash);
mbedtls_sha256_free(&ctx);
}

48
main/config.h Normal file
View File

@ -0,0 +1,48 @@
/**
* @file config.h
* @brief Config module for LED controller - handles read and store of persistent data
*/
#ifndef CONFIG_H
#define CONFIG_H
#include "esp_err.h"
#include <stdint.h>
#include <stdbool.h>
#define CONFIG_HASH_LEN 32 // SHA256
/**
* @brief Configuration structure stored in NVS
*/
typedef struct
{
int8_t led_pin_strip_a; // GPIO pin for LED strip A (-1 = not configured)
int8_t led_pin_strip_b; // GPIO pin for LED strip B (-1 = not configured)
int8_t led_count_strip_a; // LED count for LED strip A (-1 = not configured)
int8_t led_count_strip_b; // LED count for LED strip B (-1 = not configured)
int8_t pwm_pin; // GPIO pin for PWM input (-1 = not configured)
int8_t localBtn_pin; // GPIO pin for local btn input (-1 = not configured)
uint8_t hash[CONFIG_HASH_LEN]; // SHA256 Hash of config
} config_t;
/**
* @brief Initialize the config system
* Loads configuration from NVS
* @return ESP_OK on success
*/
esp_err_t config_init(void);
/**
* @brief Get current configuration
* @param Pointer to current configuration (read-only)
*/
void config_get_config(config_t *const cnf);
/**
* @brief Reset configuration to defaults
* @return ESP_OK on success
*/
esp_err_t config_reset_config(void);
#endif // CONFIG_H

90
main/control.c Normal file
View File

@ -0,0 +1,90 @@
/**
* @file control.c
* @brief Control module implementation
*/
#include "control.h"
#include "config.h"
#include "led.h"
#include "rcsignal.h"
#include "localbtn.h"
#include "animation.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_log.h"
static const char *TAG = "CONTROL";
static uint8_t current_animation_mode = 0;
// Animation mode change callback
static void on_mode_change()
{
current_animation_mode = (current_animation_mode + 1) % ANIM_MODE_COUNT;
animation_set_mode((animation_mode_t)current_animation_mode);
}
uint8_t control_get_animation_mode(void)
{
return current_animation_mode;
}
// Main initialization
esp_err_t control_init(void)
{
esp_err_t ret;
ESP_LOGI(TAG, "Initializing LED Controller...");
// Initialize config
ret = config_init();
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "Config init failed: %s", esp_err_to_name(ret));
return ret;
}
config_t current_config;
config_get_config(&current_config);
// Initialize LED strips
ret = led_init(current_config.led_pin_strip_a, current_config.led_pin_strip_b,
current_config.led_count_strip_a, current_config.led_count_strip_b);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "LED init failed: %s", esp_err_to_name(ret));
return ret;
}
// Initialize animation system
ret = animation_init();
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "Animation init failed: %s", esp_err_to_name(ret));
return ret;
}
// Initialize RC signal
ret = rcsignal_init(current_config.pwm_pin);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "RC signal init failed: %s", esp_err_to_name(ret));
return ret;
}
// Initialize local BTN
ret = localbtn_init(current_config.localBtn_pin);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "Local BTN init failed: %s", esp_err_to_name(ret));
return ret;
}
// Register mode change callback
rcsignal_register_callback(on_mode_change);
localbtn_register_callback(on_mode_change);
ESP_LOGI(TAG, "Control system initialized successfully");
return ESP_OK;
}

27
main/control.h Normal file
View File

@ -0,0 +1,27 @@
/**
* @file control.h
* @brief Control module for LED controller - handles initialization of LEDs, PWM
*/
#ifndef CONTROL_H
#define CONTROL_H
#include "esp_err.h"
#include <stdint.h>
#include <stdbool.h>
/**
* @brief Initialize the control system
* Loads configuration from NVS and initializes subsystems
* @return ESP_OK on success
*/
esp_err_t control_init(void);
/**
* @brief Get current animation mode
* @return Current mode (0-13)
*/
uint8_t control_get_animation_mode(void);
#endif // CONTROL_H

495
main/led.c Normal file
View File

@ -0,0 +1,495 @@
/**
* @file led.c
* @brief WS2812B LED strip control implementation using RMT
*/
#include "led.h"
#include "driver/rmt_tx.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include <string.h>
#include <stdlib.h>
static const char *TAG = "LED";
// WS2812B timing (in nanoseconds)
#define WS2812_T0H_NS 350
#define WS2812_T0L_NS 900
#define WS2812_T1H_NS 900
#define WS2812_T1L_NS 350
#define WS2812_RESET_US 280
// LED strip data structures
typedef struct
{
rmt_channel_handle_t rmt_channel;
rmt_encoder_handle_t encoder;
rgb_t *buffer;
uint16_t num_leds;
int8_t gpio_pin;
bool initialized;
} led_strip_t;
static led_strip_t strip_a = {0};
static led_strip_t strip_b = {0};
static SemaphoreHandle_t led_mutex = NULL;
// RMT encoder for WS2812B
typedef struct
{
rmt_encoder_t base;
rmt_encoder_t *bytes_encoder;
rmt_encoder_t *copy_encoder;
int state;
rmt_symbol_word_t reset_code;
} rmt_led_strip_encoder_t;
static size_t rmt_encode_led_strip(rmt_encoder_t *encoder, rmt_channel_handle_t channel,
const void *primary_data, size_t data_size,
rmt_encode_state_t *ret_state)
{
rmt_led_strip_encoder_t *led_encoder = __containerof(encoder, rmt_led_strip_encoder_t, base);
rmt_encode_state_t session_state = RMT_ENCODING_RESET;
rmt_encode_state_t state = RMT_ENCODING_RESET;
size_t encoded_symbols = 0;
switch (led_encoder->state)
{
case 0: // send RGB data
encoded_symbols += led_encoder->bytes_encoder->encode(led_encoder->bytes_encoder, channel,
primary_data, data_size, &session_state);
if (session_state & RMT_ENCODING_COMPLETE)
{
led_encoder->state = 1; // switch to next state when current encoding session finished
}
if (session_state & RMT_ENCODING_MEM_FULL)
{
state |= RMT_ENCODING_MEM_FULL;
goto out;
}
// fall-through
case 1: // send reset code
encoded_symbols += led_encoder->copy_encoder->encode(led_encoder->copy_encoder, channel,
&led_encoder->reset_code,
sizeof(led_encoder->reset_code), &session_state);
if (session_state & RMT_ENCODING_COMPLETE)
{
led_encoder->state = RMT_ENCODING_RESET;
state |= RMT_ENCODING_COMPLETE;
}
if (session_state & RMT_ENCODING_MEM_FULL)
{
state |= RMT_ENCODING_MEM_FULL;
goto out;
}
}
out:
*ret_state = state;
return encoded_symbols;
}
static esp_err_t rmt_del_led_strip_encoder(rmt_encoder_t *encoder)
{
rmt_led_strip_encoder_t *led_encoder = __containerof(encoder, rmt_led_strip_encoder_t, base);
rmt_del_encoder(led_encoder->bytes_encoder);
rmt_del_encoder(led_encoder->copy_encoder);
free(led_encoder);
return ESP_OK;
}
static esp_err_t rmt_led_strip_encoder_reset(rmt_encoder_t *encoder)
{
rmt_led_strip_encoder_t *led_encoder = __containerof(encoder, rmt_led_strip_encoder_t, base);
rmt_encoder_reset(led_encoder->bytes_encoder);
rmt_encoder_reset(led_encoder->copy_encoder);
led_encoder->state = RMT_ENCODING_RESET;
return ESP_OK;
}
static esp_err_t rmt_new_led_strip_encoder(rmt_encoder_handle_t *ret_encoder)
{
esp_err_t ret = ESP_OK;
rmt_led_strip_encoder_t *led_encoder = calloc(1, sizeof(rmt_led_strip_encoder_t));
if (!led_encoder)
{
return ESP_ERR_NO_MEM;
}
led_encoder->base.encode = rmt_encode_led_strip;
led_encoder->base.del = rmt_del_led_strip_encoder;
led_encoder->base.reset = rmt_led_strip_encoder_reset;
// WS2812 timing
rmt_bytes_encoder_config_t bytes_encoder_config = {
.bit0 = {
.level0 = 1,
.duration0 = WS2812_T0H_NS * 80 / 1000, // 80MHz clock
.level1 = 0,
.duration1 = WS2812_T0L_NS * 80 / 1000,
},
.bit1 = {
.level0 = 1,
.duration0 = WS2812_T1H_NS * 80 / 1000,
.level1 = 0,
.duration1 = WS2812_T1L_NS * 80 / 1000,
},
.flags.msb_first = 1,
};
ret = rmt_new_bytes_encoder(&bytes_encoder_config, &led_encoder->bytes_encoder);
if (ret != ESP_OK)
{
goto err;
}
rmt_copy_encoder_config_t copy_encoder_config = {};
ret = rmt_new_copy_encoder(&copy_encoder_config, &led_encoder->copy_encoder);
if (ret != ESP_OK)
{
goto err;
}
uint32_t reset_ticks = WS2812_RESET_US * 80; // 80MHz
led_encoder->reset_code = (rmt_symbol_word_t){
.level0 = 0,
.duration0 = reset_ticks & 0x7FFF,
.level1 = 0,
.duration1 = reset_ticks & 0x7FFF,
};
*ret_encoder = &led_encoder->base;
return ESP_OK;
err:
if (led_encoder->bytes_encoder)
{
rmt_del_encoder(led_encoder->bytes_encoder);
}
if (led_encoder->copy_encoder)
{
rmt_del_encoder(led_encoder->copy_encoder);
}
free(led_encoder);
return ret;
}
static esp_err_t init_strip(led_strip_t *strip, int8_t pin, uint16_t num_leds)
{
if (pin < 0 || num_leds == 0)
{
return ESP_OK; // Skip if not configured
}
strip->buffer = calloc(num_leds, sizeof(rgb_t));
if (!strip->buffer)
{
return ESP_ERR_NO_MEM;
}
strip->num_leds = num_leds;
strip->gpio_pin = pin;
rmt_tx_channel_config_t tx_chan_config = {
.clk_src = RMT_CLK_SRC_DEFAULT,
.gpio_num = pin,
.mem_block_symbols = 48,
.resolution_hz = 80000000, // 80MHz
.trans_queue_depth = 4,
};
ESP_ERROR_CHECK(rmt_new_tx_channel(&tx_chan_config, &strip->rmt_channel));
ESP_ERROR_CHECK(rmt_new_led_strip_encoder(&strip->encoder));
ESP_ERROR_CHECK(rmt_enable(strip->rmt_channel));
strip->initialized = true;
ESP_LOGI(TAG, "Initialized strip on GPIO%d with %d LEDs", pin, num_leds);
return ESP_OK;
}
esp_err_t led_init(int8_t pin_a, int8_t pin_b, uint16_t num_leds_a, uint16_t num_leds_b)
{
if (led_mutex == NULL)
{
led_mutex = xSemaphoreCreateMutex();
if (!led_mutex)
{
return ESP_ERR_NO_MEM;
}
}
esp_err_t ret = ESP_OK;
if (pin_a >= 0)
{
ret = init_strip(&strip_a, pin_a, num_leds_a);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "Failed to init strip A: %s", esp_err_to_name(ret));
return ret;
}
}
if (pin_b >= 0)
{
ret = init_strip(&strip_b, pin_b, num_leds_b);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "Failed to init strip B: %s", esp_err_to_name(ret));
return ret;
}
}
return ESP_OK;
}
void led_deinit(void)
{
if (strip_a.initialized)
{
rmt_disable(strip_a.rmt_channel);
rmt_del_channel(strip_a.rmt_channel);
free(strip_a.buffer);
strip_a.initialized = false;
}
if (strip_b.initialized)
{
rmt_disable(strip_b.rmt_channel);
rmt_del_channel(strip_b.rmt_channel);
free(strip_b.buffer);
strip_b.initialized = false;
}
}
void led_set_pixel_a(uint16_t index, rgb_t color)
{
if (!strip_a.initialized || index >= strip_a.num_leds)
return;
xSemaphoreTake(led_mutex, portMAX_DELAY);
strip_a.buffer[index] = color;
xSemaphoreGive(led_mutex);
}
void led_set_pixel_b(uint16_t index, rgb_t color)
{
if (!strip_b.initialized || index >= strip_b.num_leds)
return;
xSemaphoreTake(led_mutex, portMAX_DELAY);
strip_b.buffer[index] = color;
xSemaphoreGive(led_mutex);
}
void led_fill_a(rgb_t color)
{
if (!strip_a.initialized)
return;
xSemaphoreTake(led_mutex, portMAX_DELAY);
for (uint16_t i = 0; i < strip_a.num_leds; i++)
{
strip_a.buffer[i] = color;
}
xSemaphoreGive(led_mutex);
}
void led_fill_b(rgb_t color)
{
if (!strip_b.initialized)
return;
xSemaphoreTake(led_mutex, portMAX_DELAY);
for (uint16_t i = 0; i < strip_b.num_leds; i++)
{
strip_b.buffer[i] = color;
}
xSemaphoreGive(led_mutex);
}
void led_clear_all(void)
{
rgb_t black = {0, 0, 0};
led_fill_a(black);
led_fill_b(black);
}
static void show_strip(led_strip_t *strip)
{
if (!strip->initialized)
return;
// Convert RGB to GRB for WS2812B
uint8_t *grb_data = malloc(strip->num_leds * 3);
if (!grb_data)
{
ESP_LOGE(TAG, "Failed to allocate GRB buffer");
return;
}
for (uint16_t i = 0; i < strip->num_leds; i++)
{
grb_data[i * 3 + 0] = strip->buffer[i].g;
grb_data[i * 3 + 1] = strip->buffer[i].r;
grb_data[i * 3 + 2] = strip->buffer[i].b;
}
rmt_transmit_config_t tx_config = {
.loop_count = 0,
};
esp_err_t ret = rmt_transmit(strip->rmt_channel, strip->encoder, grb_data, strip->num_leds * 3, &tx_config);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "RMT transmit failed: %s", esp_err_to_name(ret));
free(grb_data);
return;
}
// Wait for transmission to complete before freeing buffer
ret = rmt_tx_wait_all_done(strip->rmt_channel, pdMS_TO_TICKS(100));
if (ret != ESP_OK)
{
ESP_LOGW(TAG, "RMT wait timeout");
}
free(grb_data);
}
void led_show(void)
{
xSemaphoreTake(led_mutex, portMAX_DELAY);
show_strip(&strip_a);
show_strip(&strip_b);
xSemaphoreGive(led_mutex);
}
void led_fade_to_black(uint8_t amount)
{
xSemaphoreTake(led_mutex, portMAX_DELAY);
if (strip_a.initialized)
{
for (uint16_t i = 0; i < strip_a.num_leds; i++)
{
strip_a.buffer[i].r = (strip_a.buffer[i].r * (255 - amount)) / 255;
strip_a.buffer[i].g = (strip_a.buffer[i].g * (255 - amount)) / 255;
strip_a.buffer[i].b = (strip_a.buffer[i].b * (255 - amount)) / 255;
}
}
if (strip_b.initialized)
{
for (uint16_t i = 0; i < strip_b.num_leds; i++)
{
strip_b.buffer[i].r = (strip_b.buffer[i].r * (255 - amount)) / 255;
strip_b.buffer[i].g = (strip_b.buffer[i].g * (255 - amount)) / 255;
strip_b.buffer[i].b = (strip_b.buffer[i].b * (255 - amount)) / 255;
}
}
xSemaphoreGive(led_mutex);
}
rgb_t led_hsv_to_rgb(hsv_t hsv)
{
rgb_t rgb = {0};
uint8_t region, remainder, p, q, t;
if (hsv.s == 0)
{
rgb.r = hsv.v;
rgb.g = hsv.v;
rgb.b = hsv.v;
return rgb;
}
region = hsv.h / 43;
remainder = (hsv.h - (region * 43)) * 6;
p = (hsv.v * (255 - hsv.s)) >> 8;
q = (hsv.v * (255 - ((hsv.s * remainder) >> 8))) >> 8;
t = (hsv.v * (255 - ((hsv.s * (255 - remainder)) >> 8))) >> 8;
switch (region)
{
case 0:
rgb.r = hsv.v;
rgb.g = t;
rgb.b = p;
break;
case 1:
rgb.r = q;
rgb.g = hsv.v;
rgb.b = p;
break;
case 2:
rgb.r = p;
rgb.g = hsv.v;
rgb.b = t;
break;
case 3:
rgb.r = p;
rgb.g = q;
rgb.b = hsv.v;
break;
case 4:
rgb.r = t;
rgb.g = p;
rgb.b = hsv.v;
break;
default:
rgb.r = hsv.v;
rgb.g = p;
rgb.b = q;
break;
}
return rgb;
}
uint16_t led_get_num_leds_a(void) { return strip_a.num_leds; }
uint16_t led_get_num_leds_b(void) { return strip_b.num_leds; }
rgb_t led_get_pixel_a(uint16_t index)
{
rgb_t color = {0};
if (!strip_a.initialized || index >= strip_a.num_leds)
return color;
xSemaphoreTake(led_mutex, portMAX_DELAY);
color = strip_a.buffer[index];
xSemaphoreGive(led_mutex);
return color;
}
rgb_t led_get_pixel_b(uint16_t index)
{
rgb_t color = {0};
if (!strip_b.initialized || index >= strip_b.num_leds)
return color;
xSemaphoreTake(led_mutex, portMAX_DELAY);
color = strip_b.buffer[index];
xSemaphoreGive(led_mutex);
return color;
}
void led_add_pixel_a(uint16_t index, rgb_t color)
{
if (!strip_a.initialized || index >= strip_a.num_leds)
return;
xSemaphoreTake(led_mutex, portMAX_DELAY);
strip_a.buffer[index].r = (strip_a.buffer[index].r + color.r > 255) ? 255 : strip_a.buffer[index].r + color.r;
strip_a.buffer[index].g = (strip_a.buffer[index].g + color.g > 255) ? 255 : strip_a.buffer[index].g + color.g;
strip_a.buffer[index].b = (strip_a.buffer[index].b + color.b > 255) ? 255 : strip_a.buffer[index].b + color.b;
xSemaphoreGive(led_mutex);
}
void led_add_pixel_b(uint16_t index, rgb_t color)
{
if (!strip_b.initialized || index >= strip_b.num_leds)
return;
xSemaphoreTake(led_mutex, portMAX_DELAY);
strip_b.buffer[index].r = (strip_b.buffer[index].r + color.r > 255) ? 255 : strip_b.buffer[index].r + color.r;
strip_b.buffer[index].g = (strip_b.buffer[index].g + color.g > 255) ? 255 : strip_b.buffer[index].g + color.g;
strip_b.buffer[index].b = (strip_b.buffer[index].b + color.b > 255) ? 255 : strip_b.buffer[index].b + color.b;
xSemaphoreGive(led_mutex);
}

137
main/led.h Normal file
View File

@ -0,0 +1,137 @@
/**
* @file led.h
* @brief LED strip control module for WS2812B
*/
#ifndef LED_H
#define LED_H
#include "esp_err.h"
#include <stdint.h>
#define LED_STRIP_MAX_LEDS 100 // Maximum LEDs per strip
/**
* @brief RGB color structure
*/
typedef struct {
uint8_t r;
uint8_t g;
uint8_t b;
} rgb_t;
/**
* @brief HSV color structure
*/
typedef struct {
uint8_t h; // Hue: 0-255
uint8_t s; // Saturation: 0-255
uint8_t v; // Value/Brightness: 0-255
} hsv_t;
/**
* @brief Initialize LED strips
* @param pin_a GPIO pin for strip A (-1 to disable)
* @param pin_b GPIO pin for strip B (-1 to disable)
* @param num_leds_a Number of LEDs in strip A
* @param num_leds_b Number of LEDs in strip B
* @return ESP_OK on success
*/
esp_err_t led_init(int8_t pin_a, int8_t pin_b, uint16_t num_leds_a, uint16_t num_leds_b);
/**
* @brief Deinitialize LED strips
*/
void led_deinit(void);
/**
* @brief Set pixel color on strip A
* @param index LED index
* @param color RGB color
*/
void led_set_pixel_a(uint16_t index, rgb_t color);
/**
* @brief Set pixel color on strip B
* @param index LED index
* @param color RGB color
*/
void led_set_pixel_b(uint16_t index, rgb_t color);
/**
* @brief Set all pixels on strip A to same color
* @param color RGB color
*/
void led_fill_a(rgb_t color);
/**
* @brief Set all pixels on strip B to same color
* @param color RGB color
*/
void led_fill_b(rgb_t color);
/**
* @brief Clear all pixels on both strips (set to black)
*/
void led_clear_all(void);
/**
* @brief Refresh/update LED strips to show changes
*/
void led_show(void);
/**
* @brief Fade all pixels towards black
* @param amount Fade amount (0-255)
*/
void led_fade_to_black(uint8_t amount);
/**
* @brief Convert HSV to RGB
* @param hsv HSV color
* @return RGB color
*/
rgb_t led_hsv_to_rgb(hsv_t hsv);
/**
* @brief Get number of LEDs in strip A
* @return Number of LEDs
*/
uint16_t led_get_num_leds_a(void);
/**
* @brief Get number of LEDs in strip B
* @return Number of LEDs
*/
uint16_t led_get_num_leds_b(void);
/**
* @brief Get current color of pixel on strip A
* @param index LED index
* @return RGB color
*/
rgb_t led_get_pixel_a(uint16_t index);
/**
* @brief Get current color of pixel on strip B
* @param index LED index
* @return RGB color
*/
rgb_t led_get_pixel_b(uint16_t index);
/**
* @brief Add color to existing pixel (blending)
* @param index LED index on strip A
* @param color RGB color to add
*/
void led_add_pixel_a(uint16_t index, rgb_t color);
/**
* @brief Add color to existing pixel (blending)
* @param index LED index on strip B
* @param color RGB color to add
*/
void led_add_pixel_b(uint16_t index, rgb_t color);
#endif // LED_H

208
main/localbtn.c Normal file
View File

@ -0,0 +1,208 @@
/**
* @file localbtn.c
* @brief Local GPIO button reading using interrupt-based edge detection
*/
#include "localbtn.h"
#include "driver/gpio.h"
#include "esp_timer.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include <string.h>
static const char *TAG = "LOCALBTN";
#define DEBOUNCE_TIME_MS 50 // Debounce time in milliseconds
// Button state
static struct
{
int8_t gpio_pin;
bool initialized;
TaskHandle_t task_handle;
QueueHandle_t event_queue;
localbtn_mode_change_callback_t callback;
int64_t last_press_time; // For debouncing
} button_state = {
.gpio_pin = -1,
.initialized = false,
.task_handle = NULL,
.event_queue = NULL,
.callback = NULL,
.last_press_time = 0};
/**
* @brief GPIO interrupt handler (ISR)
* Minimal work in ISR - just send event to task
*/
static void IRAM_ATTR gpio_isr_handler(void *arg)
{
int64_t now = esp_timer_get_time();
// Send timestamp to queue for debouncing in task
BaseType_t high_priority_task_woken = pdFALSE;
xQueueSendFromISR(button_state.event_queue, &now, &high_priority_task_woken);
if (high_priority_task_woken)
{
portYIELD_FROM_ISR();
}
}
/**
* @brief Button handling task
* Handles debouncing and callback execution
*/
static void localbtn_task(void *arg)
{
int64_t event_time;
ESP_LOGI(TAG, "Button task started, monitoring GPIO%d", button_state.gpio_pin);
while (1)
{
// Wait for button press event from ISR
if (xQueueReceive(button_state.event_queue, &event_time, portMAX_DELAY))
{
// Debouncing: Check if enough time has passed since last press
int64_t time_since_last_press = (event_time - button_state.last_press_time) / 1000; // Convert to ms
if (time_since_last_press >= DEBOUNCE_TIME_MS)
{
// Valid button press - verify button is still pressed
vTaskDelay(pdMS_TO_TICKS(10)); // Small delay to ensure stable state
if (gpio_get_level(button_state.gpio_pin) == 0)
{
ESP_LOGI(TAG, "Button press detected on GPIO%d", button_state.gpio_pin);
button_state.last_press_time = event_time;
// Execute callback
if (button_state.callback)
{
button_state.callback();
}
}
}
}
}
}
esp_err_t localbtn_init(int8_t pin_localbtn)
{
if (pin_localbtn < 0)
{
ESP_LOGW(TAG, "Button disabled (invalid pin: %d)", pin_localbtn);
return ESP_ERR_NOT_SUPPORTED;
}
if (button_state.initialized)
{
ESP_LOGW(TAG, "Button already initialized");
return ESP_ERR_INVALID_STATE;
}
button_state.gpio_pin = pin_localbtn;
button_state.last_press_time = 0U;
// Create event queue for ISR->Task communication
button_state.event_queue = xQueueCreate(10, sizeof(int64_t));
if (button_state.event_queue == NULL)
{
ESP_LOGE(TAG, "Failed to create event queue");
return ESP_ERR_NO_MEM;
}
// Configure GPIO
gpio_config_t io_conf = {
.pin_bit_mask = (1ULL << pin_localbtn),
.mode = GPIO_MODE_INPUT,
.pull_up_en = GPIO_PULLUP_ENABLE, // Enable internal pull-up (safe even with external)
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_NEGEDGE // Interrupt on falling edge (button press)
};
esp_err_t ret = gpio_config(&io_conf);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "GPIO config failed: %s", esp_err_to_name(ret));
vQueueDelete(button_state.event_queue);
return ret;
}
// Add ISR handler for this GPIO
ret = gpio_isr_handler_add(pin_localbtn, gpio_isr_handler, NULL);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "ISR handler add failed: %s", esp_err_to_name(ret));
vQueueDelete(button_state.event_queue);
return ret;
}
// Create button handling task
BaseType_t task_ret = xTaskCreate(
localbtn_task,
"localbtn_task",
2048,
NULL,
5, // Priority 5 (same as other tasks)
&button_state.task_handle);
if (task_ret != pdPASS)
{
ESP_LOGE(TAG, "Failed to create button task");
gpio_isr_handler_remove(pin_localbtn);
vQueueDelete(button_state.event_queue);
return ESP_FAIL;
}
button_state.initialized = true;
ESP_LOGI(TAG, "Button initialized on GPIO%d with interrupt-based detection", pin_localbtn);
ESP_LOGI(TAG, "Debounce time: %d ms", DEBOUNCE_TIME_MS);
return ESP_OK;
}
void localbtn_deinit(void)
{
if (!button_state.initialized)
{
return;
}
// Remove ISR handler
if (button_state.gpio_pin >= 0)
{
gpio_isr_handler_remove(button_state.gpio_pin);
}
// Delete task
if (button_state.task_handle)
{
vTaskDelete(button_state.task_handle);
button_state.task_handle = NULL;
}
// Delete queue
if (button_state.event_queue)
{
vQueueDelete(button_state.event_queue);
button_state.event_queue = NULL;
}
button_state.initialized = false;
button_state.callback = NULL;
ESP_LOGI(TAG, "Button deinitialized");
}
void localbtn_register_callback(localbtn_mode_change_callback_t cb)
{
button_state.callback = cb;
ESP_LOGI(TAG, "Callback registered");
}

37
main/localbtn.h Normal file
View File

@ -0,0 +1,37 @@
/**
* @file localbtn.h
* @brief Local GPIO button reading using interrupt-based edge detection
*/
#ifndef LOCALBTN_H
#define LOCALBTN_H
#include "esp_err.h"
#include <stdint.h>
#include <stdbool.h>
/**
* @brief Callback function type for mode changes
*/
typedef void (*localbtn_mode_change_callback_t)();
/**
* @brief Initialize local button with interrupt-based detection
* @param pin_localbtn GPIO pin number for button (active low)
* @return ESP_OK on success
*/
esp_err_t localbtn_init(int8_t pin_localbtn);
/**
* @brief Deinitialize local button reading
*/
void localbtn_deinit(void);
/**
* @brief Register callback for mode changes
* @param cb Callback function
*/
void localbtn_register_callback(localbtn_mode_change_callback_t cb);
#endif // LOCALBTN_H

91
main/main.c Normal file
View File

@ -0,0 +1,91 @@
/**
* @file main.c
* @brief Main application entry point for LED Controller
*/
#include "control.h"
#include "animation.h"
#include "led.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_log.h"
#include "esp_system.h"
#include <stdio.h>
static const char *TAG = "MAIN";
#define ANIMATION_UPDATE_RATE_MS 16 // ~60 FPS
/**
* @brief Animation update task
* Runs continuously to update LED animations
*/
static void animation_task(void *pvParameters)
{
ESP_LOGI(TAG, "Animation task started");
TickType_t last_wake_time = xTaskGetTickCount();
const TickType_t update_interval = pdMS_TO_TICKS(ANIMATION_UPDATE_RATE_MS);
while (1)
{
animation_update();
vTaskDelayUntil(&last_wake_time, update_interval);
}
}
/**
* @brief Main application entry point
*/
void app_main(void)
{
ESP_LOGI(TAG, "==============================================");
ESP_LOGI(TAG, " ESP32 LED Controller for Model Aircraft");
ESP_LOGI(TAG, "==============================================");
// Initialize control system (LEDs, PWM)
esp_err_t ret = control_init();
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "Failed to initialize control system: %s", esp_err_to_name(ret));
ESP_LOGE(TAG, "System halted. Please reset the device.");
while (1)
{
vTaskDelay(pdMS_TO_TICKS(1000));
}
}
// Create animation update task
BaseType_t task_ret = xTaskCreate(
animation_task,
"animation",
4096,
NULL,
5,
NULL);
if (task_ret != pdPASS)
{
ESP_LOGE(TAG, "Failed to create animation task");
ESP_LOGE(TAG, "System halted. Please reset the device.");
while (1)
{
vTaskDelay(pdMS_TO_TICKS(1000));
}
}
animation_set_mode((animation_mode_t)control_get_animation_mode());
ESP_LOGI(TAG, "System initialized successfully");
// Main loop - just monitor system status
while (1)
{
vTaskDelay(pdMS_TO_TICKS(5000));
// Periodic status logging
ESP_LOGI(TAG, "Animation Mode set to: %s", animation_get_mode_name(control_get_animation_mode()));
}
}

187
main/rcsignal.c Normal file
View File

@ -0,0 +1,187 @@
/**
* @file rcsignal.c
* @brief RC PWM signal reading implementation using edge capture
*/
#include "rcsignal.h"
#include "driver/gpio.h"
#include "esp_timer.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include <string.h>
static const char *TAG = "RCSIGNAL";
#define PULSE_THRESHOLD_US 1500
#define SIGNAL_TIMEOUT_MS 100
static struct
{
int8_t gpio_pin;
volatile uint32_t pulse_width_us;
volatile int64_t last_edge_time;
volatile int64_t pulse_start_time;
volatile bool last_level;
volatile bool signal_active;
volatile bool pull_detected;
uint8_t current_mode;
rcsignal_mode_change_callback_t callback;
bool initialized;
TaskHandle_t monitor_task;
} rcsignal = {
.gpio_pin = -1,
.pulse_width_us = 0,
.last_edge_time = 0,
.pulse_start_time = 0,
.last_level = false,
.signal_active = false,
.pull_detected = false,
.current_mode = 0,
.callback = NULL,
.initialized = false,
.monitor_task = NULL,
};
static void IRAM_ATTR gpio_isr_handler(void *arg)
{
int64_t now = esp_timer_get_time();
bool level = gpio_get_level(rcsignal.gpio_pin);
if (level && !rcsignal.last_level)
{
// Rising edge - start of pulse
rcsignal.pulse_start_time = now;
}
else if (!level && rcsignal.last_level)
{
// Falling edge - end of pulse
if (rcsignal.pulse_start_time > 0)
{
rcsignal.pulse_width_us = (uint32_t)(now - rcsignal.pulse_start_time);
rcsignal.last_edge_time = now;
rcsignal.signal_active = true;
}
}
rcsignal.last_level = level;
}
static void monitor_task(void *arg)
{
uint32_t last_pulse_width = 0;
while (1)
{
vTaskDelay(pdMS_TO_TICKS(10));
// Check for signal timeout
int64_t now = esp_timer_get_time();
if (rcsignal.signal_active && (now - rcsignal.last_edge_time) > (SIGNAL_TIMEOUT_MS * 1000))
{
rcsignal.signal_active = false;
rcsignal.pulse_width_us = 0;
}
// Detect mode change (rising edge on PWM signal > 1500us)
if (rcsignal.pulse_width_us != last_pulse_width)
{
last_pulse_width = rcsignal.pulse_width_us;
if (rcsignal.pulse_width_us < PULSE_THRESHOLD_US)
{
rcsignal.pull_detected = true;
}
if (rcsignal.pulse_width_us > PULSE_THRESHOLD_US && rcsignal.pull_detected)
{
// Mode change detected
rcsignal.pull_detected = false;
if (rcsignal.callback)
{
rcsignal.callback();
}
}
}
}
}
esp_err_t rcsignal_init(int8_t pin)
{
if (pin < 0)
{
ESP_LOGI(TAG, "RC signal disabled (no pin configured)");
return ESP_OK;
}
rcsignal.gpio_pin = pin;
// Configure GPIO
gpio_config_t io_conf = {
.pin_bit_mask = (1ULL << pin),
.mode = GPIO_MODE_INPUT,
.pull_up_en = GPIO_PULLUP_ENABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_ANYEDGE,
};
ESP_ERROR_CHECK(gpio_config(&io_conf));
// Install ISR service
ESP_ERROR_CHECK(gpio_install_isr_service(0));
ESP_ERROR_CHECK(gpio_isr_handler_add(pin, gpio_isr_handler, NULL));
// Create monitor task
BaseType_t ret = xTaskCreate(monitor_task, "rcsignal_monitor", 2048, NULL, 5, &rcsignal.monitor_task);
if (ret != pdPASS)
{
gpio_isr_handler_remove(pin);
gpio_uninstall_isr_service();
return ESP_FAIL;
}
rcsignal.initialized = true;
ESP_LOGI(TAG, "RC signal initialized on GPIO%d", pin);
return ESP_OK;
}
void rcsignal_deinit(void)
{
if (!rcsignal.initialized)
return;
if (rcsignal.monitor_task)
{
vTaskDelete(rcsignal.monitor_task);
rcsignal.monitor_task = NULL;
}
if (rcsignal.gpio_pin >= 0)
{
gpio_isr_handler_remove(rcsignal.gpio_pin);
}
rcsignal.initialized = false;
}
void rcsignal_register_callback(rcsignal_mode_change_callback_t callback)
{
rcsignal.callback = callback;
}
uint32_t rcsignal_get_pulse_width(void)
{
return rcsignal.pulse_width_us;
}
bool rcsignal_is_active(void)
{
return rcsignal.signal_active;
}
uint8_t rcsignal_get_current_mode(void)
{
return rcsignal.current_mode;
}

55
main/rcsignal.h Normal file
View File

@ -0,0 +1,55 @@
/**
* @file rcsignal.h
* @brief RC PWM signal reading and parsing module
*/
#ifndef RCSIGNAL_H
#define RCSIGNAL_H
#include "esp_err.h"
#include <stdint.h>
#include <stdbool.h>
/**
* @brief Callback function type for mode changes
*/
typedef void (*rcsignal_mode_change_callback_t)();
/**
* @brief Initialize RC signal reading
* @param pin GPIO pin for PWM input (-1 to disable)
* @return ESP_OK on success
*/
esp_err_t rcsignal_init(int8_t pin);
/**
* @brief Deinitialize RC signal reading
*/
void rcsignal_deinit(void);
/**
* @brief Register callback for mode changes
* @param callback Callback function
*/
void rcsignal_register_callback(rcsignal_mode_change_callback_t callback);
/**
* @brief Get current PWM pulse width in microseconds
* @return Pulse width in µs (0 if no signal)
*/
uint32_t rcsignal_get_pulse_width(void);
/**
* @brief Check if PWM signal is active
* @return true if signal detected in last 100ms
*/
bool rcsignal_is_active(void);
/**
* @brief Get current mode
* @return Current animation mode (0-13)
*/
uint8_t rcsignal_get_current_mode(void);
#endif // RCSIGNAL_H

View File

@ -1,85 +0,0 @@
#include "FastLED.h"
int rc01 = 9;
int rc02 = 10;
int led_spotlight = 2;
int rc01Val = 0;
int rc02Val = 0;
int modus = 0;
int modusMax = 13;
int red = 0;
int green = 0;
int blue = 0;
int randomVal = 0;
#define DATA_PIN 3
#define LED_TYPE WS2812B
#define COLOR_ORDER GRB
#define NUM_LEDS 44
CRGB leds[NUM_LEDS];
#define BRIGHTNESS 255
#define FRAMES_PER_SECOND 60
#define ARRAY_SIZE(A) (sizeof(A) / sizeof((A)[0]))
boolean pullRC = true;
void setup() {
//Serial.begin(9600);
Serial.println("_-_-_- Night Fly Controller V01 _-_-_-");
pinMode(rc01, INPUT);
pinMode(rc02, INPUT);
pinMode(led_spotlight, OUTPUT);
pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, HIGH);
delay(3000); // 3 second delay for recovery
// tell FastLED about the LED strip configuration
FastLED.addLeds<LED_TYPE, DATA_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection(TypicalLEDStrip);
// set master brightness control
FastLED.setBrightness(BRIGHTNESS);
}
// List of patterns to cycle through. Each is defined as a separate function below.
typedef void (*SimplePatternList[])();
SimplePatternList gPatterns = { blackMode, redMode, blueMode, greenMode, whiteMode, rainbow, rainbowWithGlitter, confetti, sinelon, bpm, navigation, chase, chaseRGB, randomMode };
uint8_t gHue = 0; // rotating "base color" used by many of the patterns
void loop() {
if (getRC01()) {
digitalWrite(led_spotlight, HIGH);
} else {
digitalWrite(led_spotlight, LOW);
}
setModus();
}
void setModus(){
if (getRC02()) {
modus = modus + 1;
if (modus > modusMax) {
modus = 1;
}
}
Serial.println(modus);
serialPrintModus(modus);
gPatterns[modus]();
// send the 'leds' array out to the actual LED strip
FastLED.show();
// insert a delay to keep the framerate modest
FastLED.delay(1000 / FRAMES_PER_SECOND);
// do some periodic updates
EVERY_N_MILLISECONDS( 20 ) {
gHue++; // slowly cycle the "base color" through the rainbow
}
}

6
partitions.csv Normal file
View File

@ -0,0 +1,6 @@
# Name, Type, SubType, Offset, Size, Flags
# Optimized for 2MB flash - 2 large OTA slots (no factory partition)
nvs, data, nvs, 0x9000, 0x4000,
phy_init, data, phy, 0xd000, 0x1000,
ota_0, app, ota_0, 0x10000, 0xF0000,
ota_1, app, ota_1, 0x100000, 0xF0000,
1 # Name, Type, SubType, Offset, Size, Flags
2 # Optimized for 2MB flash - 2 large OTA slots (no factory partition)
3 nvs, data, nvs, 0x9000, 0x4000,
4 phy_init, data, phy, 0xd000, 0x1000,
5 ota_0, app, ota_0, 0x10000, 0xF0000,
6 ota_1, app, ota_1, 0x100000, 0xF0000,

2177
sdkconfig Normal file

File diff suppressed because it is too large Load Diff