25 Commits

Author SHA256 Message Date
b6150ad452 formatting 2025-11-01 17:46:33 +01:00
d992218a7d fix search algo 2025-11-01 17:43:25 +01:00
55b62d7438 update readme 2025-11-01 17:00:00 +01:00
aeb9e04413 update control entry 2025-11-01 16:59:52 +01:00
dddf2c9bf0 Merge pull request 'Disable heating in summer' (#22) from feature/summer-mode into main
Reviewed-on: #22
2025-10-24 17:38:20 +02:00
33c7bc4007 use damped value as event source 2025-10-24 17:23:47 +02:00
524d94c515 Export current entry temperatures as metrics 2025-10-24 16:19:49 +02:00
e8c62a1bd7 slow down damping 2025-10-24 15:35:23 +02:00
5b987bfd5b improve damping 2025-10-24 11:14:10 +02:00
b3a571da3f damping instead of 24h average 2025-10-18 20:39:36 +02:00
9ff3b38f70 disable avg24h 2025-10-18 19:26:14 +02:00
067dc84afa average value for last 24h 2025-10-12 13:10:26 +02:00
9974e2d738 detect summer mode based on two thresholds 2025-10-12 12:59:33 +02:00
6eca00200e suppress heating in summer 2025-07-12 12:04:08 +02:00
ac15376f6b spelling fixes 2025-04-25 21:52:31 +02:00
dcace073d9 rework circulation pump 2025-04-25 21:45:59 +02:00
da7a1be183 Merge pull request 'fix/burner-fault-detection' (#23) from fix/burner-fault-detection into feature/summer-mode
Reviewed-on: #23
2025-04-25 20:45:51 +02:00
2477ccb42a increase threshold 2025-04-19 08:48:57 +02:00
f66b831666 rework burner fault detection 2025-04-19 08:36:19 +02:00
66b7f8320e increase burner fault threshold 2025-04-18 17:50:20 +02:00
416cda0f50 disable log of event 2025-03-01 15:43:29 +01:00
8ca3d97165 refactoring 2025-03-01 15:36:05 +01:00
c9b7313608 refactor 2025-03-01 15:24:48 +01:00
fa958dd53b add outdoor threshold 2025-03-01 15:17:22 +01:00
3771a83fcc change onewire addr to new outdoor sensor 2025-03-01 14:27:12 +01:00
7 changed files with 396 additions and 170 deletions

View File

@ -19,7 +19,11 @@ Sntp <|-- Metrics
class Inputs{ class Inputs{
+initInputs() +initInputs()
-initMeasurement()
-updateAverage()
-updatePrediction()
-taskInput() -taskInput()
-linearRegressionPredict()
+getChamberTemperature() +getChamberTemperature()
+getOutdoorTemperature() +getOutdoorTemperature()
+getInletFlowTemperature() +getInletFlowTemperature()
@ -38,7 +42,11 @@ Sntp <|-- Metrics
} }
class Control{ class Control{
initControl()
+taskControl() +taskControl()
+getControlCurrentWeekday()
-findControlCurrentTemperatureEntry()
+getControlCurrentTemperatureEntry()
-controlTable -controlTable
+getControlState() +getControlState()
} }
@ -79,33 +87,41 @@ Sntp <|-- Metrics
burner_fault_pending 1 burner_fault_pending 1
circulation_pump_enabled 1 circulation_pump_enabled 1
burner_enabled 0 burner_enabled 0
safety_contact_enabled 0 safety_contact_enabled 1
chamber_temperature 58.750000 chamber_temperature 37.250000
chamber_temperature_avg10 58.931252 chamber_temperature_avg10 37.237499
chamber_temperature_avg60 59.190475 chamber_temperature_avg60 37.438541
chamber_temperature_pred60 55.870998 chamber_temperature_damped 42.185040
inlet_flow_temperature 53.875000 chamber_temperature_pred60 36.638443
inlet_flow_temperature_avg10 53.900002 inlet_flow_temperature 35.625000
inlet_flow_temperature_avg60 53.994320 inlet_flow_temperature_avg10 35.618752
inlet_flow_temperature_pred60 52.848743 inlet_flow_temperature_avg60 35.415627
outdoor_temperature 18.000000 inlet_flow_temperature_damped 39.431259
outdoor_temperature_avg10 18.006250 inlet_flow_temperature_pred60 36.078678
outdoor_temperature_avg60 18.002840 outdoor_temperature 14.687500
outdoor_temperature_pred60 18.050785 outdoor_temperature_avg10 14.662500
return_flow_temperature 48.625000 outdoor_temperature_avg60 14.646875
return_flow_temperature_avg10 48.718750 outdoor_temperature_damped 9.169084
return_flow_temperature_avg60 48.846592 outdoor_temperature_pred60 14.660233
return_flow_temperature_pred60 47.383083 return_flow_temperature 39.937500
return_flow_temperature_avg10 40.087502
return_flow_temperature_avg60 41.146873
return_flow_temperature_damped 32.385151
return_flow_temperature_pred60 37.311958
chamber_temperature_state 0 chamber_temperature_state 0
outdoor_temperature_state 0 outdoor_temperature_state 0
inlet_flow_temperature_state 0 inlet_flow_temperature_state 0
return_flow_temperature_state 0 return_flow_temperature_state 0
safety_state 0 safety_state 0
control_state 3 control_state 3
control_current_weekday 5
control_current_entry_time 17100
control_current_entry_chamber_temperature 80.000000
control_current_entry_return_flow_temperature 30.000000
sntp_state 0 sntp_state 0
system_unixtime 1735242392 system_unixtime 1762012743
uptime_seconds 40 uptime_seconds 465229
wifi_rssi -74 wifi_rssi -72
``` ```
#### Status Encoding #### Status Encoding

View File

@ -1,47 +1,107 @@
#include "control.h"
#include "esp_log.h"
#include "esp_timer.h"
#include "freertos/FreeRTOS.h" #include "freertos/FreeRTOS.h"
#include "freertos/task.h" #include "freertos/task.h"
#include "esp_timer.h"
#include "esp_log.h"
#include "control.h"
#include "outputs.h"
#include "inputs.h" #include "inputs.h"
#include "outputs.h"
#include "safety.h" #include "safety.h"
#include "sntp.h" #include "sntp.h"
#define PERIODIC_INTERVAL 1U // run control loop every 1sec #define PERIODIC_INTERVAL 1U // Run control loop every 1 second
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0 // Temperature thresholds
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0 #define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0f
#define CHAMPER_TEMPERATURE_TARGET 80.0 #define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0f
#define BURNER_FAULT_DETECTION_THRESHOLD (60U * 3U) // Detect burner fault if after 3 minutes no burner start detected #define CHAMBER_TEMPERATURE_TARGET 80.0f // Max cutoff temperature
#define CHAMBER_TEMPERATURE_THRESHOLD 45.0f // Min threshold for burner enable
#define SUMMER_MODE_TEMPERATURE_THRESHOLD_HIGH \
20.0f // Summer mode will be activated
#define SUMMER_MODE_TEMPERATURE_THRESHOLD_LOW \
15.0f // Summer mode will be deactivated --> Heating starts
#define CIRCULATION_PUMP_TEMPERATURE_THRESHOLD \
30.0f // Min threshold of chamber for circulation pump enable
#define BURNER_FAULT_DETECTION_THRESHOLD \
(60U * 4U) // Burner fault detection after 4 minutes
static const char *TAG = "smart-oil-heater-control-system-control"; static const char *TAG = "smart-oil-heater-control-system-control";
static eControlState sControlState = CONTROL_STARTING; static eControlState sControlState = CONTROL_STARTING;
// Control table for daily schedules
static sControlDay aControlTable[] = { static const sControlDay aControlTable[] = {
{MONDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, {MONDAY,
{TUESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, 2U,
{WEDNESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, {{{4, 45},
{THURSDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
{FRIDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{23, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, CHAMBER_TEMPERATURE_TARGET},
{SATURDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{23, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, {{22, 0},
{SUNDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{TUESDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{WEDNESDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{THURSDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{FRIDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{23, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{SATURDAY,
2U,
{{{6, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{23, 30},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{SUNDAY,
2U,
{{{6, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 30},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
}; };
static sControlTemperatureEntry currentControlEntry =
aControlTable[0].aTemperatureEntries[0];
// Function prototypes
void taskControl(void *pvParameters); void taskControl(void *pvParameters);
eControlWeekday getCurrentWeekday(void); void findControlCurrentTemperatureEntry(void);
sControlTemperatureEntry getCurrentTemperatureEntry(void);
void initControl(void) void initControl(void)
{ {
BaseType_t taskCreated = xTaskCreate( BaseType_t taskCreated =
taskControl, // Function to implement the task xTaskCreate(taskControl, // Function to implement the task
"taskControl", // Task name "taskControl", // Task name
8192, // Stack size (in words, not bytes) 8192, // Stack size (in words, not bytes)
NULL, // Parameters to the task function (none in this case) NULL, // Parameters to the task function (none in this case)
5, // Task priority (higher number = higher priority) 5, // Task priority (higher number = higher priority)
NULL // Task handle (optional) NULL // Task handle (optional)
); );
if (taskCreated == pdPASS) if (taskCreated == pdPASS)
{ {
@ -56,87 +116,79 @@ void initControl(void)
void taskControl(void *pvParameters) void taskControl(void *pvParameters)
{ {
bool bHeatingInAction = false; bool bHeatingInAction = false;
bool bBurnerFaultDetected = false; bool bSummerMode = false;
eBurnerState eBurnerState = BURNER_UNKNOWN;
int64_t i64BurnerEnableTimestamp = esp_timer_get_time(); int64_t i64BurnerEnableTimestamp = esp_timer_get_time();
while (1) while (1)
{ {
vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS); vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS);
// Check for safety faults
if (getSafetyState() != SAFETY_NO_ERROR) if (getSafetyState() != SAFETY_NO_ERROR)
{ {
ESP_LOGW(TAG, "Control not possible due to safety fault!"); ESP_LOGW(TAG, "Control not possible due to safety fault!");
sControlState = CONTROL_FAULT_SAFETY; sControlState = CONTROL_FAULT_SAFETY;
if (bHeatingInAction == true) if (bHeatingInAction)
{ {
ESP_LOGW(TAG, "Control not possible due to safety fault: Disable burner"); ESP_LOGW(TAG, "Disabling burner due to safety fault");
bHeatingInAction = false; bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED); setBurnerState(DISABLED);
setSafetyControlState(ENABLED); setSafetyControlState(ENABLED);
} }
continue; continue;
} }
// Check for SNTP faults
if (getSntpState() != SYNC_SUCCESSFUL) if (getSntpState() != SYNC_SUCCESSFUL)
{ {
ESP_LOGW(TAG, "Control not possible due to sntp fault!"); ESP_LOGW(TAG, "Control not possible due to SNTP fault!");
sControlState = CONTROL_FAULT_SNTP; sControlState = CONTROL_FAULT_SNTP;
if (bHeatingInAction == true) if (bHeatingInAction)
{ {
ESP_LOGW(TAG, "Control not possible due to sntp fault: Disable burner"); ESP_LOGW(TAG, "Disabling burner due to SNTP fault");
bHeatingInAction = false; bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED); setBurnerState(DISABLED);
setSafetyControlState(ENABLED); setSafetyControlState(ENABLED);
} }
continue; continue;
} }
sControlTemperatureEntry currentControlEntry = getCurrentTemperatureEntry(); findControlCurrentTemperatureEntry();
// ESP_LOGI(TAG, "Control Entry Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", currentControlEntry.timestamp.hour, currentControlEntry.timestamp.minute, currentControlEntry.fChamberTemperature, currentControlEntry.fReturnFlowTemperature); sControlTemperatureEntry currentControlEntry =
getControlCurrentTemperatureEntry();
if (bHeatingInAction == true) if (getOutdoorTemperature().fDampedValue >=
SUMMER_MODE_TEMPERATURE_THRESHOLD_HIGH)
{ {
if ((getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature) || (getChamberTemperature().predict60s.fValue >= currentControlEntry.fChamberTemperature)) bSummerMode = true;
{ }
ESP_LOGI(TAG, "Chamber Target Temperature reached: Disable burner"); else if (getOutdoorTemperature().fDampedValue <=
bHeatingInAction = false; SUMMER_MODE_TEMPERATURE_THRESHOLD_LOW)
setCirculationPumpState(ENABLED); {
setBurnerState(DISABLED); bSummerMode = false;
setSafetyControlState(ENABLED);
}
else
{
if (bHeatingInAction)
{
int64_t i64Delta = esp_timer_get_time() - i64BurnerEnableTimestamp;
if ((i64Delta / 1000000U) >= BURNER_FAULT_DETECTION_THRESHOLD)
{
if (getBurnerError() == FAULT)
{
ESP_LOGW(TAG, "Detected burner fault after %lli seconds!", (i64Delta / 1000000U));
ESP_LOGW(TAG, "Control not possible due to burner fault: Disable burner");
sControlState = CONTROL_FAULT_BURNER;
bHeatingInAction = false;
bBurnerFaultDetected = true;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
}
}
}
} }
if ((bHeatingInAction == false) && (bBurnerFaultDetected == false)) // Enable burner if outdoor temperature is low and return flow temperature
// is cooled down
if (!bHeatingInAction && (eBurnerState != BURNER_FAULT))
{ {
if ((getReturnFlowTemperature().average60s.fValue <= currentControlEntry.fReturnFlowTemperature) && (getChamberTemperature().fCurrentValue <= 45.0)) if (bSummerMode)
{ {
ESP_LOGI(TAG, "Return Flow Target Temperature reached: Enable Burner"); // ESP_LOGI(TAG, "Outdoor temperature too warm: Disabling heating");
setBurnerState(DISABLED);
setSafetyControlState(DISABLED);
sControlState = CONTROL_OUTDOOR_TOO_WARM;
}
else if ((getReturnFlowTemperature().average60s.fValue <=
currentControlEntry.fReturnFlowTemperature) &&
(getChamberTemperature().fCurrentValue <=
CHAMBER_TEMPERATURE_THRESHOLD))
{
ESP_LOGI(TAG,
"Enabling burner: Return flow temperature target reached");
eBurnerState = BURNER_UNKNOWN;
bHeatingInAction = true; bHeatingInAction = true;
setCirculationPumpState(ENABLED);
setBurnerState(ENABLED); setBurnerState(ENABLED);
setSafetyControlState(ENABLED); setSafetyControlState(ENABLED);
i64BurnerEnableTimestamp = esp_timer_get_time(); i64BurnerEnableTimestamp = esp_timer_get_time();
@ -144,89 +196,164 @@ void taskControl(void *pvParameters)
} }
else else
{ {
// ESP_LOGI(TAG, "Return flow temperature too warm: Disabling heating");
sControlState = CONTROL_RETURN_FLOW_TOO_WARM; sControlState = CONTROL_RETURN_FLOW_TOO_WARM;
} }
} }
}
// Disable burner if target temperature is reached or a fault occurred
if (bHeatingInAction)
{
if ((getChamberTemperature().fCurrentValue >=
currentControlEntry.fChamberTemperature) ||
(getChamberTemperature().predict60s.fValue >=
currentControlEntry.fChamberTemperature))
{
ESP_LOGI(TAG, "Chamber target temperature reached: Disabling burner");
bHeatingInAction = false;
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
else if (esp_timer_get_time() - i64BurnerEnableTimestamp >=
BURNER_FAULT_DETECTION_THRESHOLD * 1000000U)
{
if (eBurnerState == BURNER_UNKNOWN)
{
if (getBurnerError() == FAULT)
{
// ESP_LOGW(TAG, "Burner fault detected: Disabling burner");
bHeatingInAction = false;
eBurnerState = BURNER_FAULT;
sControlState = CONTROL_FAULT_BURNER;
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
else
{
// ESP_LOGI(TAG, "No burner fault detected: Marking burner as
// fired");
eBurnerState = BURNER_FIRED;
}
}
}
}
// Manage circulation pump
if (getChamberTemperature().fCurrentValue <=
CIRCULATION_PUMP_TEMPERATURE_THRESHOLD)
{
// ESP_LOGI(TAG, "Burner cooled down: Disabling circulation pump");
setCirculationPumpState(DISABLED);
}
else
{
// ESP_LOGI(TAG, "Burner heated: Enabling circulation pump");
setCirculationPumpState(ENABLED);
}
} // End of while(1)
} }
eControlState getControlState(void) eControlState getControlState(void) { return sControlState; }
{
return sControlState;
}
eControlWeekday getCurrentWeekday(void) eControlWeekday getControlCurrentWeekday(void)
{ {
time_t now; time_t now;
struct tm *timeinfo; struct tm *timeinfo;
// Get the current time
time(&now); time(&now);
timeinfo = localtime(&now); // Convert to local time timeinfo = localtime(&now);
// Get the day of the week (0 = Sunday, 1 = Monday, ..., 6 = Saturday)
int day = timeinfo->tm_wday; int day = timeinfo->tm_wday;
return (eControlWeekday)((day == 0) ? 6 : day - 1);
// Adjust so that Monday = 0, Sunday = 6
if (day == 0)
{
day = 6; // Sunday becomes 6
}
else
{
day -= 1; // Shift other days to make Monday = 0
}
return (eControlWeekday)day;
} }
sControlTemperatureEntry getCurrentTemperatureEntry(void) /**
* @brief Finds the active temperature control entry for the current time.
*
* Searches through the weekly schedule to find the most recent entry
* that should be active at the current date/time. Falls back to the
* last entry in the week if no suitable entry is found.
*/
/**
* @brief Finds the active temperature control entry for the current time.
*
* Searches through the weekly schedule to find the most recent entry
* that should be active at the current date/time. Falls back to the
* last entry in the week if no suitable entry is found.
*/
void findControlCurrentTemperatureEntry(void)
{ {
sControlTemperatureEntry result = aControlTable[0].aTemperatureEntries[0]; eControlWeekday currentDay = getControlCurrentWeekday();
eControlWeekday currentDay = getCurrentWeekday();
// Get current time
time_t now; time_t now;
struct tm timeinfo; struct tm timeinfo;
// Get the current time
time(&now); time(&now);
// Convert to local time structure
localtime_r(&now, &timeinfo); localtime_r(&now, &timeinfo);
// Extract hour and minute
int hour = timeinfo.tm_hour; // Hour (0-23)
int minute = timeinfo.tm_min; // Minute (0-59)u
// ESP_LOGI(TAG, "Current Day: %i Hour: %i Minute: %i", currentDay, hour, minute); int currentHour = timeinfo.tm_hour;
int currentMinute = timeinfo.tm_min;
for (int i = 0; i < sizeof(aControlTable) / sizeof(aControlTable[0]); i++) // ESP_LOGI(TAG, "Searching for control entry - Day: %d, Time: %02d:%02d", currentDay, currentHour, currentMinute);
// Search through all days and entries
for (int dayIndex = 0; dayIndex < 7; dayIndex++)
{ {
/// loops through days const sControlDay *day = &aControlTable[dayIndex];
// ESP_LOGI(TAG, "Day %d: %d", i + 1, aControlTable[i].day);
// int numberOfEntries = aControlTable[i].entryCount;
// ESP_LOGI(TAG, "Number of entries: %i", numberOfEntries);
for (int j = 0; j < aControlTable[i].entryCount; j++) for (int entryIndex = 0; entryIndex < day->entryCount; entryIndex++)
{ {
if ((aControlTable[i].day) > currentDay) const sControlTemperatureEntry *entry = &day->aTemperatureEntries[entryIndex];
{
// ESP_LOGI(TAG, "DAY Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
return result;
}
if ((aControlTable[i].day == currentDay) && (aControlTable[i].aTemperatureEntries[j].timestamp.hour > hour)) // Check if this entry is in the future (next active entry)
{ bool isFutureDay = (day->day > currentDay);
// ESP_LOGI(TAG, "HOUR Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature); bool isTodayFutureTime = (day->day == currentDay) &&
return result; ((entry->timestamp.hour > currentHour) ||
} (entry->timestamp.hour == currentHour &&
entry->timestamp.minute > currentMinute));
if ((aControlTable[i].day == currentDay) && (aControlTable[i].aTemperatureEntries[j].timestamp.hour == hour) && (aControlTable[i].aTemperatureEntries[j].timestamp.minute == minute)) if (isFutureDay || isTodayFutureTime)
{ {
// ESP_LOGI(TAG, "MINUTE Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature); // Found next scheduled entry, so determine the previous (active) one
return result; if (entryIndex > 0)
{
// Use previous entry from same day
currentControlEntry = day->aTemperatureEntries[entryIndex - 1];
}
else if (dayIndex > 0)
{
// Use last entry from previous day
const sControlDay *previousDay = &aControlTable[dayIndex - 1];
currentControlEntry = previousDay->aTemperatureEntries[previousDay->entryCount - 1];
}
else
{
// First entry of the week - wrap to last entry of Sunday
const sControlDay *sunday = &aControlTable[6];
currentControlEntry = sunday->aTemperatureEntries[sunday->entryCount - 1];
}
/*
ESP_LOGI(TAG, "Active entry found - Time: %02d:%02d, "
"Return Temp: %lf, Chamber Temp: %lf",
currentControlEntry.timestamp.hour,
currentControlEntry.timestamp.minute,
currentControlEntry.fReturnFlowTemperature,
currentControlEntry.fChamberTemperature);
*/
return;
} }
// ESP_LOGI(TAG, "SET Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature);
result = aControlTable[i].aTemperatureEntries[j];
} }
} }
return result;
} // If we reached here, current time is after all entries this week
// Use the last entry (Sunday evening)
const sControlDay *sunday = &aControlTable[6];
currentControlEntry = sunday->aTemperatureEntries[sunday->entryCount - 1];
// ESP_LOGI(TAG, "Using last entry of week - Time: %02d:%02d", currentControlEntry.timestamp.hour, currentControlEntry.timestamp.minute);
}
sControlTemperatureEntry getControlCurrentTemperatureEntry(void)
{
return currentControlEntry;
}

View File

@ -14,6 +14,13 @@ typedef enum _ControlState
CONTROL_FAULT_SNTP, CONTROL_FAULT_SNTP,
} eControlState; } eControlState;
typedef enum _BurnerState
{
BURNER_UNKNOWN, // Burner is disabled or state after enabling is still unkown
BURNER_FIRED, // Burner fired successfully
BURNER_FAULT // Burner was unable to fire successfully
} eBurnerState;
typedef enum _ControlWeekday typedef enum _ControlWeekday
{ {
MONDAY, MONDAY,
@ -47,3 +54,5 @@ typedef struct _ControlDay
void initControl(void); void initControl(void);
eControlState getControlState(void); eControlState getControlState(void);
eControlWeekday getControlCurrentWeekday(void);
sControlTemperatureEntry getControlCurrentTemperatureEntry(void);

View File

@ -17,7 +17,7 @@ const uint8_t uBurnerFaultPin = 19U;
const uint8_t uDS18B20Pin = 4U; const uint8_t uDS18B20Pin = 4U;
const onewire_addr_t uChamperTempSensorAddr = 0xd00000108cd01d28; const onewire_addr_t uChamperTempSensorAddr = 0xd00000108cd01d28;
const onewire_addr_t uOutdoorTempSensorAddr = 0x78000000c6c2f728; const onewire_addr_t uOutdoorTempSensorAddr = 0xd70000108a9b9128;
const onewire_addr_t uInletFlowTempSensorAddr = 0x410000108b8c0628; const onewire_addr_t uInletFlowTempSensorAddr = 0x410000108b8c0628;
const onewire_addr_t uReturnFlowTempSensorAddr = 0x90000108cc77c28; const onewire_addr_t uReturnFlowTempSensorAddr = 0x90000108cc77c28;
@ -88,22 +88,23 @@ void initMeasurement(sMeasurement *pMeasurement)
return; return;
pMeasurement->state = MEASUREMENT_FAULT; pMeasurement->state = MEASUREMENT_FAULT;
pMeasurement->fCurrentValue = 0.0f; pMeasurement->fCurrentValue = INITIALISATION_VALUE;
pMeasurement->fDampedValue = INITIALISATION_VALUE;
pMeasurement->average10s.fValue = 0.0f; pMeasurement->average10s.fValue = INITIALISATION_VALUE;
pMeasurement->average10s.bufferCount = 0U; pMeasurement->average10s.bufferCount = 0U;
pMeasurement->average10s.bufferIndex = 0U; pMeasurement->average10s.bufferIndex = 0U;
memset(pMeasurement->average10s.samples, 0U, AVG10_SAMPLE_SIZE); memset(pMeasurement->average10s.samples, 0U, AVG10S_SAMPLE_SIZE);
pMeasurement->average60s.fValue = 0.0f; pMeasurement->average60s.fValue = INITIALISATION_VALUE;
pMeasurement->average60s.bufferCount = 0U; pMeasurement->average60s.bufferCount = 0U;
pMeasurement->average60s.bufferIndex = 0U; pMeasurement->average60s.bufferIndex = 0U;
memset(pMeasurement->average60s.samples, 0U, AVG60_SAMPLE_SIZE); memset(pMeasurement->average60s.samples, 0U, AVG60S_SAMPLE_SIZE);
pMeasurement->predict60s.fValue = 0.0f; pMeasurement->predict60s.fValue = INITIALISATION_VALUE;
pMeasurement->predict60s.bufferCount = 0U; pMeasurement->predict60s.bufferCount = 0U;
pMeasurement->predict60s.bufferIndex = 0U; pMeasurement->predict60s.bufferIndex = 0U;
memset(pMeasurement->predict60s.samples, 0U, PRED60_SAMPLE_SIZE); memset(pMeasurement->predict60s.samples, 0U, PRED60S_SAMPLE_SIZE);
} }
void updateAverage(sMeasurement *pMeasurement) void updateAverage(sMeasurement *pMeasurement)
@ -113,9 +114,9 @@ void updateAverage(sMeasurement *pMeasurement)
// Average form the last 10sec // Average form the last 10sec
pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->fCurrentValue; pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average10s.bufferIndex = (pMeasurement->average10s.bufferIndex + 1) % AVG10_SAMPLE_SIZE; pMeasurement->average10s.bufferIndex = (pMeasurement->average10s.bufferIndex + 1) % AVG10S_SAMPLE_SIZE;
if (pMeasurement->average10s.bufferCount < AVG10_SAMPLE_SIZE) if (pMeasurement->average10s.bufferCount < AVG10S_SAMPLE_SIZE)
{ {
pMeasurement->average10s.bufferCount++; pMeasurement->average10s.bufferCount++;
} }
@ -130,9 +131,9 @@ void updateAverage(sMeasurement *pMeasurement)
// Average form the last 60sec // Average form the last 60sec
pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue; pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average60s.bufferIndex = (pMeasurement->average60s.bufferIndex + 1) % AVG60_SAMPLE_SIZE; pMeasurement->average60s.bufferIndex = (pMeasurement->average60s.bufferIndex + 1) % AVG60S_SAMPLE_SIZE;
if (pMeasurement->average60s.bufferCount < AVG60_SAMPLE_SIZE) if (pMeasurement->average60s.bufferCount < AVG60S_SAMPLE_SIZE)
{ {
pMeasurement->average60s.bufferCount++; pMeasurement->average60s.bufferCount++;
} }
@ -144,6 +145,24 @@ void updateAverage(sMeasurement *pMeasurement)
} }
pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount; pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount;
// Damped current value
if (pMeasurement->fDampedValue == INITIALISATION_VALUE)
{
pMeasurement->fDampedValue = pMeasurement->fCurrentValue;
}
else
{
if (pMeasurement->fCurrentValue > pMeasurement->fDampedValue)
{
pMeasurement->fDampedValue = pMeasurement->fDampedValue + (DAMPING_FACTOR_WARMER * (pMeasurement->fCurrentValue - pMeasurement->fDampedValue));
}
if (pMeasurement->fCurrentValue < pMeasurement->fDampedValue)
{
pMeasurement->fDampedValue = pMeasurement->fDampedValue - (DAMPING_FACTOR_COLDER * (pMeasurement->fDampedValue - pMeasurement->fCurrentValue));
}
}
} }
void updatePrediction(sMeasurement *pMeasurement) void updatePrediction(sMeasurement *pMeasurement)
@ -154,8 +173,8 @@ void updatePrediction(sMeasurement *pMeasurement)
// Update predict60s buffer // Update predict60s buffer
sPredict *predict60s = &pMeasurement->predict60s; sPredict *predict60s = &pMeasurement->predict60s;
predict60s->samples[predict60s->bufferIndex] = pMeasurement->fCurrentValue; predict60s->samples[predict60s->bufferIndex] = pMeasurement->fCurrentValue;
predict60s->bufferIndex = (predict60s->bufferIndex + 1) % PRED60_SAMPLE_SIZE; predict60s->bufferIndex = (predict60s->bufferIndex + 1) % PRED60S_SAMPLE_SIZE;
if (predict60s->bufferCount < PRED60_SAMPLE_SIZE) if (predict60s->bufferCount < PRED60S_SAMPLE_SIZE)
predict60s->bufferCount++; predict60s->bufferCount++;
// Predict 60s future value using linear regression // Predict 60s future value using linear regression
@ -271,9 +290,9 @@ void taskInput(void *pvParameters)
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex) float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex)
{ {
if (count == 0) if (count == 0)
return 0.0f; // No prediction possible with no data return INITIALISATION_VALUE; // No prediction possible with no data
float sumX = 0.0f, sumY = 0.0f, sumXY = 0.0f, sumX2 = 0.0f; float sumX = INITIALISATION_VALUE, sumY = INITIALISATION_VALUE, sumXY = INITIALISATION_VALUE, sumX2 = INITIALISATION_VALUE;
for (size_t i = 0; i < count; i++) for (size_t i = 0; i < count; i++)
{ {

View File

@ -1,9 +1,13 @@
#pragma once #pragma once
#define MAX(a, b) ((a) > (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b))
#define AVG10_SAMPLE_SIZE 10U #define INITIALISATION_VALUE 0.0f
#define AVG60_SAMPLE_SIZE 60U #define AVG10S_SAMPLE_SIZE 10U
#define PRED60_SAMPLE_SIZE 60U #define AVG60S_SAMPLE_SIZE 60U
#define AVG24H_SAMPLE_SIZE 24U
#define PRED60S_SAMPLE_SIZE 60U
#define DAMPING_FACTOR_WARMER 0.00001f // 0.001%
#define DAMPING_FACTOR_COLDER 0.00005f // 0.005%
typedef enum _BurnerErrorState typedef enum _BurnerErrorState
{ {
@ -20,7 +24,7 @@ typedef enum _MeasurementErrorState
typedef struct _Average typedef struct _Average
{ {
float fValue; float fValue;
float samples[MAX(AVG10_SAMPLE_SIZE, AVG60_SAMPLE_SIZE)]; float samples[MAX(AVG10S_SAMPLE_SIZE, MAX(AVG60S_SAMPLE_SIZE, AVG24H_SAMPLE_SIZE))];
size_t bufferIndex; size_t bufferIndex;
size_t bufferCount; size_t bufferCount;
} sAverage; } sAverage;
@ -28,7 +32,7 @@ typedef struct _Average
typedef struct _Predict typedef struct _Predict
{ {
float fValue; float fValue;
float samples[PRED60_SAMPLE_SIZE]; float samples[PRED60S_SAMPLE_SIZE];
size_t bufferIndex; size_t bufferIndex;
size_t bufferCount; size_t bufferCount;
} sPredict; } sPredict;
@ -36,6 +40,7 @@ typedef struct _Predict
typedef struct _Measurement typedef struct _Measurement
{ {
float fCurrentValue; float fCurrentValue;
float fDampedValue;
sAverage average10s; sAverage average10s;
sAverage average60s; sAverage average60s;
sPredict predict60s; sPredict predict60s;

View File

@ -128,6 +128,12 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average60s.fValue; aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average60s.fValue;
u16MetricCounter++; u16MetricCounter++;
// Chamber Temperature Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().fDampedValue;
u16MetricCounter++;
// Chamber Temperature Predict 60s // Chamber Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_pred60"); strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT; aMetrics[u16MetricCounter].type = FLOAT;
@ -152,6 +158,12 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average60s.fValue; aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average60s.fValue;
u16MetricCounter++; u16MetricCounter++;
// Inlet Flow Temperature Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().fDampedValue;
u16MetricCounter++;
// Inlet Flow Temperature Predict 60s // Inlet Flow Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_pred60"); strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT; aMetrics[u16MetricCounter].type = FLOAT;
@ -176,6 +188,12 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average60s.fValue; aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average60s.fValue;
u16MetricCounter++; u16MetricCounter++;
// Outdoor Temperature Average Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().fDampedValue;
u16MetricCounter++;
// Outdoor Temperature Predict 60s // Outdoor Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_pred60"); strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT; aMetrics[u16MetricCounter].type = FLOAT;
@ -200,6 +218,12 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average60s.fValue; aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average60s.fValue;
u16MetricCounter++; u16MetricCounter++;
// Return Flow Temperature Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().fDampedValue;
u16MetricCounter++;
// Return Flow Temperature Predict 60s // Return Flow Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_pred60"); strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT; aMetrics[u16MetricCounter].type = FLOAT;
@ -230,6 +254,31 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].u8MetricValue = getControlState(); aMetrics[u16MetricCounter].u8MetricValue = getControlState();
u16MetricCounter++; u16MetricCounter++;
// Control Current Weekday
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_weekday");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getControlCurrentWeekday();
u16MetricCounter++;
// Control Current Entry Time
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_entry_time");
aMetrics[u16MetricCounter].type = INTEGER_64;
int64_t i64SecondsSinceMidnight = (getControlCurrentTemperatureEntry().timestamp.hour * 60U * 60U) + (getControlCurrentTemperatureEntry().timestamp.minute * 60U);
aMetrics[u16MetricCounter].i64MetricValue = i64SecondsSinceMidnight;
u16MetricCounter++;
// Control Current Entry Chamber Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_entry_chamber_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getControlCurrentTemperatureEntry().fChamberTemperature;
u16MetricCounter++;
// Control Current Entry Return Flow Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_entry_return_flow_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getControlCurrentTemperatureEntry().fReturnFlowTemperature;
u16MetricCounter++;
// SNTP State // SNTP State
strcpy(aMetrics[u16MetricCounter].caMetricName, "sntp_state"); strcpy(aMetrics[u16MetricCounter].caMetricName, "sntp_state");
aMetrics[u16MetricCounter].type = INTEGER_U8; aMetrics[u16MetricCounter].type = INTEGER_U8;
@ -258,6 +307,7 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].i64MetricValue = ap.rssi; aMetrics[u16MetricCounter].i64MetricValue = ap.rssi;
u16MetricCounter++; u16MetricCounter++;
ESP_ERROR_CHECK(u16MetricCounter > METRIC_MAX_COUNT);
vSetMetrics(aMetrics, u16MetricCounter); vSetMetrics(aMetrics, u16MetricCounter);
} }
} }

View File

@ -4,7 +4,7 @@
#define HTML_RESPONSE_SIZE 4096U #define HTML_RESPONSE_SIZE 4096U
#define METRIC_NAME_MAX_SIZE 64U #define METRIC_NAME_MAX_SIZE 64U
#define METRIC_MAX_COUNT 32U #define METRIC_MAX_COUNT 38U
typedef enum _MetricValueType typedef enum _MetricValueType
{ {