40 Commits

Author SHA256 Message Date
f3f6f1bc5f Potential division by zero 2026-01-10 12:01:22 +01:00
b718073907 Missing break before default 2026-01-10 11:58:46 +01:00
d36b91a0fd Variable name shadows type name 2026-01-10 11:57:15 +01:00
40f757b7d1 uUnchangedCounter reset logic flaw 2026-01-10 11:54:18 +01:00
a9ec101bc6 Floating-point equality comparison 2026-01-10 11:52:08 +01:00
0236ebcdd1 Unsafe strcpy 2026-01-10 11:47:04 +01:00
05757a5038 Unchecked WiFi API call 2026-01-10 11:45:49 +01:00
020eb63e05 Unchecked network configuration 2026-01-10 11:43:26 +01:00
67929580d5 Unchecked xEventGroupCreate 2026-01-10 11:42:27 +01:00
10f9645580 Unchecked gpio_config returns 2026-01-10 11:39:37 +01:00
df3825df3a Non-thread-safe function 2026-01-10 11:33:37 +01:00
8c3dbc2886 Unprotected shared state access 2026-01-10 11:31:34 +01:00
267197ec20 Missing mutex protection 2026-01-10 11:06:10 +01:00
781f9a1445 ncorrect memset with strlen 2026-01-10 11:02:31 +01:00
09a3c3a22d Misuse of ESP_ERROR_CHECK 2026-01-10 10:58:12 +01:00
0775fda0ca Off-by-one error (buffer overread) 2026-01-10 10:55:15 +01:00
cd73985740 Wrong memset size 2026-01-10 10:54:32 +01:00
af307fd403 handle reconnect 2026-01-09 23:35:44 +01:00
cb69bea618 Update control entry (#25)
Reviewed-on: #25
Co-authored-by: localhorst <localhorst@mosad.xyz>
Co-committed-by: localhorst <localhorst@mosad.xyz>
2026-01-09 23:17:26 +01:00
dddf2c9bf0 Merge pull request 'Disable heating in summer' (#22) from feature/summer-mode into main
Reviewed-on: #22
2025-10-24 17:38:20 +02:00
33c7bc4007 use damped value as event source 2025-10-24 17:23:47 +02:00
524d94c515 Export current entry temperatures as metrics 2025-10-24 16:19:49 +02:00
e8c62a1bd7 slow down damping 2025-10-24 15:35:23 +02:00
5b987bfd5b improve damping 2025-10-24 11:14:10 +02:00
b3a571da3f damping instead of 24h average 2025-10-18 20:39:36 +02:00
9ff3b38f70 disable avg24h 2025-10-18 19:26:14 +02:00
067dc84afa average value for last 24h 2025-10-12 13:10:26 +02:00
9974e2d738 detect summer mode based on two thresholds 2025-10-12 12:59:33 +02:00
6eca00200e suppress heating in summer 2025-07-12 12:04:08 +02:00
ac15376f6b spelling fixes 2025-04-25 21:52:31 +02:00
dcace073d9 rework circulation pump 2025-04-25 21:45:59 +02:00
da7a1be183 Merge pull request 'fix/burner-fault-detection' (#23) from fix/burner-fault-detection into feature/summer-mode
Reviewed-on: #23
2025-04-25 20:45:51 +02:00
2477ccb42a increase threshold 2025-04-19 08:48:57 +02:00
f66b831666 rework burner fault detection 2025-04-19 08:36:19 +02:00
66b7f8320e increase burner fault threshold 2025-04-18 17:50:20 +02:00
416cda0f50 disable log of event 2025-03-01 15:43:29 +01:00
8ca3d97165 refactoring 2025-03-01 15:36:05 +01:00
c9b7313608 refactor 2025-03-01 15:24:48 +01:00
fa958dd53b add outdoor threshold 2025-03-01 15:17:22 +01:00
3771a83fcc change onewire addr to new outdoor sensor 2025-03-01 14:27:12 +01:00
11 changed files with 580 additions and 204 deletions

View File

@ -19,7 +19,11 @@ Sntp <|-- Metrics
class Inputs{ class Inputs{
+initInputs() +initInputs()
-initMeasurement()
-updateAverage()
-updatePrediction()
-taskInput() -taskInput()
-linearRegressionPredict()
+getChamberTemperature() +getChamberTemperature()
+getOutdoorTemperature() +getOutdoorTemperature()
+getInletFlowTemperature() +getInletFlowTemperature()
@ -38,7 +42,11 @@ Sntp <|-- Metrics
} }
class Control{ class Control{
initControl()
+taskControl() +taskControl()
+getControlCurrentWeekday()
-findControlCurrentTemperatureEntry()
+getControlCurrentTemperatureEntry()
-controlTable -controlTable
+getControlState() +getControlState()
} }
@ -79,33 +87,41 @@ Sntp <|-- Metrics
burner_fault_pending 1 burner_fault_pending 1
circulation_pump_enabled 1 circulation_pump_enabled 1
burner_enabled 0 burner_enabled 0
safety_contact_enabled 0 safety_contact_enabled 1
chamber_temperature 58.750000 chamber_temperature 37.250000
chamber_temperature_avg10 58.931252 chamber_temperature_avg10 37.237499
chamber_temperature_avg60 59.190475 chamber_temperature_avg60 37.438541
chamber_temperature_pred60 55.870998 chamber_temperature_damped 42.185040
inlet_flow_temperature 53.875000 chamber_temperature_pred60 36.638443
inlet_flow_temperature_avg10 53.900002 inlet_flow_temperature 35.625000
inlet_flow_temperature_avg60 53.994320 inlet_flow_temperature_avg10 35.618752
inlet_flow_temperature_pred60 52.848743 inlet_flow_temperature_avg60 35.415627
outdoor_temperature 18.000000 inlet_flow_temperature_damped 39.431259
outdoor_temperature_avg10 18.006250 inlet_flow_temperature_pred60 36.078678
outdoor_temperature_avg60 18.002840 outdoor_temperature 14.687500
outdoor_temperature_pred60 18.050785 outdoor_temperature_avg10 14.662500
return_flow_temperature 48.625000 outdoor_temperature_avg60 14.646875
return_flow_temperature_avg10 48.718750 outdoor_temperature_damped 9.169084
return_flow_temperature_avg60 48.846592 outdoor_temperature_pred60 14.660233
return_flow_temperature_pred60 47.383083 return_flow_temperature 39.937500
return_flow_temperature_avg10 40.087502
return_flow_temperature_avg60 41.146873
return_flow_temperature_damped 32.385151
return_flow_temperature_pred60 37.311958
chamber_temperature_state 0 chamber_temperature_state 0
outdoor_temperature_state 0 outdoor_temperature_state 0
inlet_flow_temperature_state 0 inlet_flow_temperature_state 0
return_flow_temperature_state 0 return_flow_temperature_state 0
safety_state 0 safety_state 0
control_state 3 control_state 3
control_current_weekday 5
control_current_entry_time 17100
control_current_entry_chamber_temperature 80.000000
control_current_entry_return_flow_temperature 30.000000
sntp_state 0 sntp_state 0
system_unixtime 1735242392 system_unixtime 1762012743
uptime_seconds 40 uptime_seconds 465229
wifi_rssi -74 wifi_rssi -72
``` ```
#### Status Encoding #### Status Encoding

View File

@ -1,47 +1,117 @@
#include "control.h"
#include "esp_log.h"
#include "esp_timer.h"
#include "freertos/FreeRTOS.h" #include "freertos/FreeRTOS.h"
#include "freertos/task.h" #include "freertos/task.h"
#include "esp_timer.h"
#include "esp_log.h"
#include "control.h"
#include "outputs.h"
#include "inputs.h" #include "inputs.h"
#include "outputs.h"
#include "safety.h" #include "safety.h"
#include "sntp.h" #include "sntp.h"
#define PERIODIC_INTERVAL 1U // run control loop every 1sec #define PERIODIC_INTERVAL 1U // Run control loop every 1 second
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0 // Temperature thresholds
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0 #define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0f
#define CHAMPER_TEMPERATURE_TARGET 80.0 #define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0f
#define BURNER_FAULT_DETECTION_THRESHOLD (60U * 3U) // Detect burner fault if after 3 minutes no burner start detected #define CHAMBER_TEMPERATURE_TARGET 80.0f // Max cutoff temperature
#define CHAMBER_TEMPERATURE_THRESHOLD 45.0f // Min threshold for burner enable
#define SUMMER_MODE_TEMPERATURE_THRESHOLD_HIGH \
20.0f // Summer mode will be activated
#define SUMMER_MODE_TEMPERATURE_THRESHOLD_LOW \
15.0f // Summer mode will be deactivated --> Heating starts
#define CIRCULATION_PUMP_TEMPERATURE_THRESHOLD \
30.0f // Min threshold of chamber for circulation pump enable
#define BURNER_FAULT_DETECTION_THRESHOLD \
(60U * 4U) // Burner fault detection after 4 minutes
static const char *TAG = "smart-oil-heater-control-system-control"; static const char *TAG = "smart-oil-heater-control-system-control";
static eControlState sControlState = CONTROL_STARTING; static eControlState gControlState = CONTROL_STARTING;
// Control table for daily schedules
static sControlDay aControlTable[] = { static const sControlDay gControlTable[] = {
{MONDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, {MONDAY,
{TUESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, 2U,
{WEDNESDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, {{{4, 45},
{THURSDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
{FRIDAY, 2U, {{{4, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{23, 0}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, CHAMBER_TEMPERATURE_TARGET},
{SATURDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{23, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, {{22, 0},
{SUNDAY, 2U, {{{6, 45}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY, CHAMPER_TEMPERATURE_TARGET}, {{22, 30}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT, CHAMPER_TEMPERATURE_TARGET}}}, RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{TUESDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{WEDNESDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{THURSDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{FRIDAY,
2U,
{{{4, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{23, 0},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{SATURDAY,
2U,
{{{6, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{23, 30},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
{SUNDAY,
2U,
{{{6, 45},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY,
CHAMBER_TEMPERATURE_TARGET},
{{22, 30},
RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT,
CHAMBER_TEMPERATURE_TARGET}}},
}; };
static sControlTemperatureEntry gCurrentControlEntry =
gControlTable[0].aTemperatureEntries[0];
static SemaphoreHandle_t xMutexAccessControl = NULL;
// Function prototypes
void taskControl(void *pvParameters); void taskControl(void *pvParameters);
eControlWeekday getCurrentWeekday(void); void findControlCurrentTemperatureEntry(void);
sControlTemperatureEntry getCurrentTemperatureEntry(void); void setControlState(eControlState state);
void initControl(void) void initControl(void)
{ {
BaseType_t taskCreated = xTaskCreate(
taskControl, // Function to implement the task xMutexAccessControl = xSemaphoreCreateRecursiveMutex();
"taskControl", // Task name if (xMutexAccessControl == NULL)
8192, // Stack size (in words, not bytes) {
NULL, // Parameters to the task function (none in this case) ESP_LOGE(TAG, "Unable to create mutex");
5, // Task priority (higher number = higher priority) }
NULL // Task handle (optional) xSemaphoreGiveRecursive(xMutexAccessControl);
);
BaseType_t taskCreated =
xTaskCreate(taskControl, // Function to implement the task
"taskControl", // Task name
8192, // Stack size (in words, not bytes)
NULL, // Parameters to the task function (none in this case)
5, // Task priority (higher number = higher priority)
NULL // Task handle (optional)
);
if (taskCreated == pdPASS) if (taskCreated == pdPASS)
{ {
@ -56,182 +126,293 @@ void initControl(void)
void taskControl(void *pvParameters) void taskControl(void *pvParameters)
{ {
bool bHeatingInAction = false; bool bHeatingInAction = false;
bool bBurnerFaultDetected = false; bool bSummerMode = false;
eBurnerState burnerState = BURNER_UNKNOWN;
int64_t i64BurnerEnableTimestamp = esp_timer_get_time(); int64_t i64BurnerEnableTimestamp = esp_timer_get_time();
time_t now;
while (1) while (1)
{ {
// Get the current time
time(&now);
ESP_LOGW(TAG, "Control loop time: %lli", now);
vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS); vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS);
// Check for safety faults
if (getSafetyState() != SAFETY_NO_ERROR) if (getSafetyState() != SAFETY_NO_ERROR)
{ {
//ESP_LOGW(TAG, "Control not possible due to safety fault!"); ESP_LOGW(TAG, "Control not possible due to safety fault!");
sControlState = CONTROL_FAULT_SAFETY; setControlState(CONTROL_FAULT_SAFETY);
if (bHeatingInAction == true) if (bHeatingInAction)
{ {
ESP_LOGW(TAG, "Control not possible due to safety fault: Disable burner"); ESP_LOGW(TAG, "Disabling burner due to safety fault");
bHeatingInAction = false; bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED); setBurnerState(DISABLED);
setSafetyControlState(ENABLED); setSafetyControlState(ENABLED);
} }
continue; continue;
} }
// Check for SNTP faults
if (getSntpState() != SYNC_SUCCESSFUL) if (getSntpState() != SYNC_SUCCESSFUL)
{ {
ESP_LOGW(TAG, "Control not possible due to sntp fault!"); ESP_LOGW(TAG, "Control not possible due to SNTP fault!");
sControlState = CONTROL_FAULT_SNTP; setControlState(CONTROL_FAULT_SNTP);
if (bHeatingInAction == true) if (bHeatingInAction)
{ {
ESP_LOGW(TAG, "Control not possible due to sntp fault: Disable burner"); ESP_LOGW(TAG, "Disabling burner due to SNTP fault");
bHeatingInAction = false; bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED); setBurnerState(DISABLED);
setSafetyControlState(ENABLED); setSafetyControlState(ENABLED);
} }
continue; continue;
} }
sControlTemperatureEntry currentControlEntry = getCurrentTemperatureEntry(); findControlCurrentTemperatureEntry();
// ESP_LOGI(TAG, "Control Entry Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", currentControlEntry.timestamp.hour, currentControlEntry.timestamp.minute, currentControlEntry.fChamberTemperature, currentControlEntry.fReturnFlowTemperature);
if (bHeatingInAction == true) if (getOutdoorTemperature().fDampedValue >=
SUMMER_MODE_TEMPERATURE_THRESHOLD_HIGH)
{ {
if ((getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature) || (getChamberTemperature().predict60s.fValue >= currentControlEntry.fChamberTemperature)) bSummerMode = true;
}
else if (getOutdoorTemperature().fDampedValue <=
SUMMER_MODE_TEMPERATURE_THRESHOLD_LOW)
{
bSummerMode = false;
}
// Enable burner if outdoor temperature is low and return flow temperature
// is cooled down
if (!bHeatingInAction && (burnerState != BURNER_FAULT))
{
if (bSummerMode)
{ {
ESP_LOGI(TAG, "Chamber Target Temperature reached: Disable burner"); // ESP_LOGI(TAG, "Outdoor temperature too warm: Disabling heating");
bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED); setBurnerState(DISABLED);
setSafetyControlState(DISABLED);
setControlState(CONTROL_OUTDOOR_TOO_WARM);
}
else if ((getReturnFlowTemperature().average60s.fValue <=
getControlCurrentTemperatureEntry().fReturnFlowTemperature) &&
(getChamberTemperature().fCurrentValue <=
CHAMBER_TEMPERATURE_THRESHOLD))
{
ESP_LOGI(TAG,
"Enabling burner: Return flow temperature target reached");
burnerState = BURNER_UNKNOWN;
bHeatingInAction = true;
setBurnerState(ENABLED);
setSafetyControlState(ENABLED); setSafetyControlState(ENABLED);
i64BurnerEnableTimestamp = esp_timer_get_time();
setControlState(CONTROL_HEATING);
} }
else else
{ {
if (bHeatingInAction) // ESP_LOGI(TAG, "Return flow temperature too warm: Disabling heating");
{ setControlState(CONTROL_RETURN_FLOW_TOO_WARM);
int64_t i64Delta = esp_timer_get_time() - i64BurnerEnableTimestamp; }
}
if ((i64Delta / 1000000U) >= BURNER_FAULT_DETECTION_THRESHOLD) // Disable burner if target temperature is reached or a fault occurred
if (bHeatingInAction)
{
if ((getChamberTemperature().fCurrentValue >=
getControlCurrentTemperatureEntry().fChamberTemperature) ||
(getChamberTemperature().predict60s.fValue >=
getControlCurrentTemperatureEntry().fChamberTemperature))
{
ESP_LOGI(TAG, "Chamber target temperature reached: Disabling burner");
bHeatingInAction = false;
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
else if (esp_timer_get_time() - i64BurnerEnableTimestamp >=
BURNER_FAULT_DETECTION_THRESHOLD * 1000000U)
{
if (burnerState == BURNER_UNKNOWN)
{
if (getBurnerError() == FAULT)
{ {
if (getBurnerError() == FAULT) // ESP_LOGW(TAG, "Burner fault detected: Disabling burner");
{ bHeatingInAction = false;
ESP_LOGW(TAG, "Detected burner fault after %lli seconds!", (i64Delta / 1000000U)); burnerState = BURNER_FAULT;
ESP_LOGW(TAG, "Control not possible due to burner fault: Disable burner"); setControlState(CONTROL_FAULT_BURNER);
sControlState = CONTROL_FAULT_BURNER; setBurnerState(DISABLED);
bHeatingInAction = false; setSafetyControlState(ENABLED);
bBurnerFaultDetected = true; }
setCirculationPumpState(ENABLED); else
setBurnerState(DISABLED); {
setSafetyControlState(ENABLED); // ESP_LOGI(TAG, "No burner fault detected: Marking burner as
} // fired");
burnerState = BURNER_FIRED;
} }
} }
} }
} }
if ((bHeatingInAction == false) && (bBurnerFaultDetected == false)) // Manage circulation pump
if (getChamberTemperature().fCurrentValue <=
CIRCULATION_PUMP_TEMPERATURE_THRESHOLD)
{ {
if ((getReturnFlowTemperature().average60s.fValue <= currentControlEntry.fReturnFlowTemperature) && (getChamberTemperature().fCurrentValue <= 45.0)) // ESP_LOGI(TAG, "Burner cooled down: Disabling circulation pump");
{ setCirculationPumpState(DISABLED);
ESP_LOGI(TAG, "Return Flow Target Temperature reached: Enable Burner");
bHeatingInAction = true;
setCirculationPumpState(ENABLED);
setBurnerState(ENABLED);
setSafetyControlState(ENABLED);
i64BurnerEnableTimestamp = esp_timer_get_time();
sControlState = CONTROL_HEATING;
}
else
{
sControlState = CONTROL_RETURN_FLOW_TOO_WARM;
}
} }
else
{
// ESP_LOGI(TAG, "Burner heated: Enabling circulation pump");
setCirculationPumpState(ENABLED);
}
} // End of while(1)
}
void setControlState(eControlState state)
{
if (xSemaphoreTakeRecursive(xMutexAccessControl, pdMS_TO_TICKS(5000)) == pdTRUE)
{
gControlState = state;
xSemaphoreGiveRecursive(xMutexAccessControl);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: setControlState()");
} }
} }
eControlState getControlState(void) eControlState getControlState(void)
{ {
return sControlState;
}
eControlWeekday getCurrentWeekday(void) eControlState ret = CONTROL_FAULT_SAFETY;
{
time_t now;
struct tm *timeinfo;
// Get the current time if (xSemaphoreTakeRecursive(xMutexAccessControl, pdMS_TO_TICKS(5000)) == pdTRUE)
time(&now);
timeinfo = localtime(&now); // Convert to local time
// Get the day of the week (0 = Sunday, 1 = Monday, ..., 6 = Saturday)
int day = timeinfo->tm_wday;
// Adjust so that Monday = 0, Sunday = 6
if (day == 0)
{ {
day = 6; // Sunday becomes 6 ret = gControlState;
xSemaphoreGiveRecursive(xMutexAccessControl);
} }
else else
{ {
day -= 1; // Shift other days to make Monday = 0 ESP_LOGE(TAG, "Unable to take mutex: getControlState()");
} }
return (eControlWeekday)day; return ret;
} }
sControlTemperatureEntry getCurrentTemperatureEntry(void) eControlWeekday getControlCurrentWeekday(void)
{ {
sControlTemperatureEntry result = aControlTable[0].aTemperatureEntries[0]; // Get current time
eControlWeekday currentDay = getCurrentWeekday();
time_t now; time_t now;
struct tm timeinfo; struct tm timeinfo;
// Get the current time
time(&now); time(&now);
// Convert to local time structure
localtime_r(&now, &timeinfo); localtime_r(&now, &timeinfo);
// Extract hour and minute
int hour = timeinfo.tm_hour; // Hour (0-23)
int minute = timeinfo.tm_min; // Minute (0-59)u
// ESP_LOGI(TAG, "Current Day: %i Hour: %i Minute: %i", currentDay, hour, minute); int day = timeinfo.tm_wday;
return (eControlWeekday)((day == 0) ? 6 : day - 1);
for (int i = 0; i < sizeof(aControlTable) / sizeof(aControlTable[0]); i++) }
{
/// loops through days /**
// ESP_LOGI(TAG, "Day %d: %d", i + 1, aControlTable[i].day); * @brief Finds the active temperature control entry for the current time.
// int numberOfEntries = aControlTable[i].entryCount; *
// ESP_LOGI(TAG, "Number of entries: %i", numberOfEntries); * Searches through the weekly schedule to find the most recent entry
* that should be active at the current date/time. Falls back to the
for (int j = 0; j < aControlTable[i].entryCount; j++) * last entry in the week if no suitable entry is found.
{ */
if ((aControlTable[i].day) > currentDay) /**
{ * @brief Finds the active temperature control entry for the current time.
// ESP_LOGI(TAG, "DAY Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature); *
return result; * Searches through the weekly schedule to find the most recent entry
} * that should be active at the current date/time. Falls back to the
* last entry in the week if no suitable entry is found.
if ((aControlTable[i].day == currentDay) && (aControlTable[i].aTemperatureEntries[j].timestamp.hour > hour)) */
{ void findControlCurrentTemperatureEntry(void)
// ESP_LOGI(TAG, "HOUR Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature); {
return result; eControlWeekday currentDay = getControlCurrentWeekday();
}
// Get current time
if ((aControlTable[i].day == currentDay) && (aControlTable[i].aTemperatureEntries[j].timestamp.hour == hour) && (aControlTable[i].aTemperatureEntries[j].timestamp.minute == minute)) time_t now;
{ struct tm timeinfo;
// ESP_LOGI(TAG, "MINUTE Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature); time(&now);
return result; localtime_r(&now, &timeinfo);
}
int currentHour = timeinfo.tm_hour;
// ESP_LOGI(TAG, "SET Return Control Entry Day: %i Hour: %i Minute: %i ChamberTemp: %lf ReturnFlowTemp: %lf", aControlTable[i].day, aControlTable[i].aTemperatureEntries[j].timestamp.hour, aControlTable[i].aTemperatureEntries[j].timestamp.minute, aControlTable[i].aTemperatureEntries[j].fChamberTemperature, aControlTable[i].aTemperatureEntries[j].fReturnFlowTemperature); int currentMinute = timeinfo.tm_min;
result = aControlTable[i].aTemperatureEntries[j];
} if (xSemaphoreTakeRecursive(xMutexAccessControl, pdMS_TO_TICKS(5000)) == pdTRUE)
} {
return result;
// ESP_LOGI(TAG, "Searching for control entry - Day: %d, Time: %02d:%02d", currentDay, currentHour, currentMinute);
// Search through all days and entries
for (int dayIndex = 0; dayIndex < 7; dayIndex++)
{
const sControlDay *day = &gControlTable[dayIndex];
for (int entryIndex = 0; entryIndex < day->entryCount; entryIndex++)
{
const sControlTemperatureEntry *entry = &day->aTemperatureEntries[entryIndex];
// Check if this entry is in the future (next active entry)
bool isFutureDay = (day->day > currentDay);
bool isTodayFutureTime = (day->day == currentDay) &&
((entry->timestamp.hour > currentHour) ||
(entry->timestamp.hour == currentHour &&
entry->timestamp.minute > currentMinute));
if (isFutureDay || isTodayFutureTime)
{
// Found next scheduled entry, so determine the previous (active) one
if (entryIndex > 0)
{
// Use previous entry from same day
gCurrentControlEntry = day->aTemperatureEntries[entryIndex - 1];
}
else if (dayIndex > 0)
{
// Use last entry from previous day
const sControlDay *previousDay = &gControlTable[dayIndex - 1];
gCurrentControlEntry = previousDay->aTemperatureEntries[previousDay->entryCount - 1];
}
else
{
// First entry of the week - wrap to last entry of Sunday
const sControlDay *sunday = &gControlTable[6];
gCurrentControlEntry = sunday->aTemperatureEntries[sunday->entryCount - 1];
}
/*
ESP_LOGI(TAG, "Active entry found - Time: %02d:%02d, "
"Return Temp: %lf, Chamber Temp: %lf",
gCurrentControlEntry.timestamp.hour,
gCurrentControlEntry.timestamp.minute,
gCurrentControlEntry.fReturnFlowTemperature,
gCurrentControlEntry.fChamberTemperature);
*/
return;
}
}
}
// If we reached here, current time is after all entries this week
// Use the last entry (Sunday evening)
const sControlDay *sunday = &gControlTable[6];
gCurrentControlEntry = sunday->aTemperatureEntries[sunday->entryCount - 1];
// ESP_LOGI(TAG, "Using last entry of week - Time: %02d:%02d", gCurrentControlEntry.timestamp.hour, gCurrentControlEntry.timestamp.minute);
xSemaphoreGiveRecursive(xMutexAccessControl);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: findControlCurrentTemperatureEntry()");
}
}
sControlTemperatureEntry getControlCurrentTemperatureEntry(void)
{
sControlTemperatureEntry ret = gControlTable[0].aTemperatureEntries[0];
if (xSemaphoreTakeRecursive(xMutexAccessControl, pdMS_TO_TICKS(5000)) == pdTRUE)
{
ret = gCurrentControlEntry;
xSemaphoreGiveRecursive(xMutexAccessControl);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: getControlCurrentTemperatureEntry()");
}
return ret;
} }

View File

@ -14,6 +14,13 @@ typedef enum _ControlState
CONTROL_FAULT_SNTP, CONTROL_FAULT_SNTP,
} eControlState; } eControlState;
typedef enum _BurnerState
{
BURNER_UNKNOWN, // Burner is disabled or state after enabling is still unkown
BURNER_FIRED, // Burner fired successfully
BURNER_FAULT // Burner was unable to fire successfully
} eBurnerState;
typedef enum _ControlWeekday typedef enum _ControlWeekday
{ {
MONDAY, MONDAY,
@ -47,3 +54,5 @@ typedef struct _ControlDay
void initControl(void); void initControl(void);
eControlState getControlState(void); eControlState getControlState(void);
eControlWeekday getControlCurrentWeekday(void);
sControlTemperatureEntry getControlCurrentTemperatureEntry(void);

View File

@ -17,7 +17,7 @@ const uint8_t uBurnerFaultPin = 19U;
const uint8_t uDS18B20Pin = 4U; const uint8_t uDS18B20Pin = 4U;
const onewire_addr_t uChamperTempSensorAddr = 0xd00000108cd01d28; const onewire_addr_t uChamperTempSensorAddr = 0xd00000108cd01d28;
const onewire_addr_t uOutdoorTempSensorAddr = 0x78000000c6c2f728; const onewire_addr_t uOutdoorTempSensorAddr = 0xd70000108a9b9128;
const onewire_addr_t uInletFlowTempSensorAddr = 0x410000108b8c0628; const onewire_addr_t uInletFlowTempSensorAddr = 0x410000108b8c0628;
const onewire_addr_t uReturnFlowTempSensorAddr = 0x90000108cc77c28; const onewire_addr_t uReturnFlowTempSensorAddr = 0x90000108cc77c28;
@ -49,7 +49,12 @@ void initInputs(void)
.intr_type = GPIO_INTR_DISABLE // Disable interrupts .intr_type = GPIO_INTR_DISABLE // Disable interrupts
}; };
gpio_config(&ioConfBurnerFault); esp_err_t ret = gpio_config(&ioConfBurnerFault);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "GPIO config failed: %s", esp_err_to_name(ret));
return;
}
xMutexAccessInputs = xSemaphoreCreateRecursiveMutex(); xMutexAccessInputs = xSemaphoreCreateRecursiveMutex();
if (xMutexAccessInputs == NULL) if (xMutexAccessInputs == NULL)
@ -88,22 +93,23 @@ void initMeasurement(sMeasurement *pMeasurement)
return; return;
pMeasurement->state = MEASUREMENT_FAULT; pMeasurement->state = MEASUREMENT_FAULT;
pMeasurement->fCurrentValue = 0.0f; pMeasurement->fCurrentValue = INITIALISATION_VALUE;
pMeasurement->fDampedValue = INITIALISATION_VALUE;
pMeasurement->average10s.fValue = 0.0f; pMeasurement->average10s.fValue = INITIALISATION_VALUE;
pMeasurement->average10s.bufferCount = 0U; pMeasurement->average10s.bufferCount = 0U;
pMeasurement->average10s.bufferIndex = 0U; pMeasurement->average10s.bufferIndex = 0U;
memset(pMeasurement->average10s.samples, 0U, AVG10_SAMPLE_SIZE); memset(pMeasurement->average10s.samples, 0U, sizeof(float) * AVG10S_SAMPLE_SIZE);
pMeasurement->average60s.fValue = 0.0f; pMeasurement->average60s.fValue = INITIALISATION_VALUE;
pMeasurement->average60s.bufferCount = 0U; pMeasurement->average60s.bufferCount = 0U;
pMeasurement->average60s.bufferIndex = 0U; pMeasurement->average60s.bufferIndex = 0U;
memset(pMeasurement->average60s.samples, 0U, AVG60_SAMPLE_SIZE); memset(pMeasurement->average60s.samples, 0U, sizeof(float) * AVG60S_SAMPLE_SIZE);
pMeasurement->predict60s.fValue = 0.0f; pMeasurement->predict60s.fValue = INITIALISATION_VALUE;
pMeasurement->predict60s.bufferCount = 0U; pMeasurement->predict60s.bufferCount = 0U;
pMeasurement->predict60s.bufferIndex = 0U; pMeasurement->predict60s.bufferIndex = 0U;
memset(pMeasurement->predict60s.samples, 0U, PRED60_SAMPLE_SIZE); memset(pMeasurement->predict60s.samples, 0U, sizeof(float) * PRED60S_SAMPLE_SIZE);
} }
void updateAverage(sMeasurement *pMeasurement) void updateAverage(sMeasurement *pMeasurement)
@ -113,26 +119,33 @@ void updateAverage(sMeasurement *pMeasurement)
// Average form the last 10sec // Average form the last 10sec
pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->fCurrentValue; pMeasurement->average10s.samples[pMeasurement->average10s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average10s.bufferIndex = (pMeasurement->average10s.bufferIndex + 1) % AVG10_SAMPLE_SIZE; pMeasurement->average10s.bufferIndex = (pMeasurement->average10s.bufferIndex + 1) % AVG10S_SAMPLE_SIZE;
if (pMeasurement->average10s.bufferCount < AVG10_SAMPLE_SIZE) if (pMeasurement->average10s.bufferCount < AVG10S_SAMPLE_SIZE)
{ {
pMeasurement->average10s.bufferCount++; pMeasurement->average10s.bufferCount++;
} }
float sum = 0.0; float sum = 0.0;
for (int i = 0; i <= pMeasurement->average10s.bufferCount; i++) for (int i = 0; i < pMeasurement->average10s.bufferCount; i++)
{ {
sum += pMeasurement->average10s.samples[i]; sum += pMeasurement->average10s.samples[i];
} }
pMeasurement->average10s.fValue = sum / pMeasurement->average10s.bufferCount; if (pMeasurement->average10s.bufferCount == 0U)
{
pMeasurement->average10s.fValue = 0.0f;
}
else
{
pMeasurement->average10s.fValue = sum / pMeasurement->average10s.bufferCount;
}
// Average form the last 60sec // Average form the last 60sec
pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue; pMeasurement->average60s.samples[pMeasurement->average60s.bufferIndex] = pMeasurement->fCurrentValue;
pMeasurement->average60s.bufferIndex = (pMeasurement->average60s.bufferIndex + 1) % AVG60_SAMPLE_SIZE; pMeasurement->average60s.bufferIndex = (pMeasurement->average60s.bufferIndex + 1) % AVG60S_SAMPLE_SIZE;
if (pMeasurement->average60s.bufferCount < AVG60_SAMPLE_SIZE) if (pMeasurement->average60s.bufferCount < AVG60S_SAMPLE_SIZE)
{ {
pMeasurement->average60s.bufferCount++; pMeasurement->average60s.bufferCount++;
} }
@ -143,7 +156,32 @@ void updateAverage(sMeasurement *pMeasurement)
sum += pMeasurement->average60s.samples[i]; sum += pMeasurement->average60s.samples[i];
} }
pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount; if (pMeasurement->average60s.bufferCount == 0U)
{
pMeasurement->average60s.fValue = 0.0f;
}
else
{
pMeasurement->average60s.fValue = sum / pMeasurement->average60s.bufferCount;
}
// Damped current value
if (pMeasurement->fDampedValue == INITIALISATION_VALUE)
{
pMeasurement->fDampedValue = pMeasurement->fCurrentValue;
}
else
{
if (pMeasurement->fCurrentValue > pMeasurement->fDampedValue)
{
pMeasurement->fDampedValue = pMeasurement->fDampedValue + (DAMPING_FACTOR_WARMER * (pMeasurement->fCurrentValue - pMeasurement->fDampedValue));
}
if (pMeasurement->fCurrentValue < pMeasurement->fDampedValue)
{
pMeasurement->fDampedValue = pMeasurement->fDampedValue - (DAMPING_FACTOR_COLDER * (pMeasurement->fDampedValue - pMeasurement->fCurrentValue));
}
}
} }
void updatePrediction(sMeasurement *pMeasurement) void updatePrediction(sMeasurement *pMeasurement)
@ -154,8 +192,8 @@ void updatePrediction(sMeasurement *pMeasurement)
// Update predict60s buffer // Update predict60s buffer
sPredict *predict60s = &pMeasurement->predict60s; sPredict *predict60s = &pMeasurement->predict60s;
predict60s->samples[predict60s->bufferIndex] = pMeasurement->fCurrentValue; predict60s->samples[predict60s->bufferIndex] = pMeasurement->fCurrentValue;
predict60s->bufferIndex = (predict60s->bufferIndex + 1) % PRED60_SAMPLE_SIZE; predict60s->bufferIndex = (predict60s->bufferIndex + 1) % PRED60S_SAMPLE_SIZE;
if (predict60s->bufferCount < PRED60_SAMPLE_SIZE) if (predict60s->bufferCount < PRED60S_SAMPLE_SIZE)
predict60s->bufferCount++; predict60s->bufferCount++;
// Predict 60s future value using linear regression // Predict 60s future value using linear regression
@ -189,12 +227,12 @@ void taskInput(void *pvParameters)
if (ds18x20_scan_devices(uDS18B20Pin, uOneWireAddresses, MAX_DN18B20_SENSORS, &sSensorCount) != ESP_OK) if (ds18x20_scan_devices(uDS18B20Pin, uOneWireAddresses, MAX_DN18B20_SENSORS, &sSensorCount) != ESP_OK)
{ {
// ESP_LOGE(TAG, "1-Wire device scan error!"); ESP_LOGE(TAG, "1-Wire device scan error!");
} }
if (!sSensorCount) if (!sSensorCount)
{ {
// ESP_LOGW(TAG, "No 1-Wire devices detected!"); ESP_LOGW(TAG, "No 1-Wire devices detected!");
} }
else else
{ {
@ -203,14 +241,14 @@ void taskInput(void *pvParameters)
if (sSensorCount > MAX_DN18B20_SENSORS) if (sSensorCount > MAX_DN18B20_SENSORS)
{ {
sSensorCount = MAX_DN18B20_SENSORS; sSensorCount = MAX_DN18B20_SENSORS;
// ESP_LOGW(TAG, "More 1-Wire devices found than expected!"); ESP_LOGW(TAG, "More 1-Wire devices found than expected!");
} }
for (size_t iReadLoop = 0; iReadLoop < ONE_WIRE_LOOPS; iReadLoop++) for (size_t iReadLoop = 0; iReadLoop < ONE_WIRE_LOOPS; iReadLoop++)
{ {
if (ds18x20_measure_and_read_multi(uDS18B20Pin, uOneWireAddresses, sSensorCount, fDS18B20Temps) != ESP_OK) if (ds18x20_measure_and_read_multi(uDS18B20Pin, uOneWireAddresses, sSensorCount, fDS18B20Temps) != ESP_OK)
{ {
// ESP_LOGE(TAG, "1-Wire devices read error"); ESP_LOGE(TAG, "1-Wire devices read error");
vTaskDelay(PERIODIC_INTERVAL * 100U / portTICK_PERIOD_MS); // Wait 100ms if bus error occurred vTaskDelay(PERIODIC_INTERVAL * 100U / portTICK_PERIOD_MS); // Wait 100ms if bus error occurred
} }
else else
@ -271,9 +309,9 @@ void taskInput(void *pvParameters)
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex) float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex)
{ {
if (count == 0) if (count == 0)
return 0.0f; // No prediction possible with no data return INITIALISATION_VALUE; // No prediction possible with no data
float sumX = 0.0f, sumY = 0.0f, sumXY = 0.0f, sumX2 = 0.0f; float sumX = INITIALISATION_VALUE, sumY = INITIALISATION_VALUE, sumXY = INITIALISATION_VALUE, sumX2 = INITIALISATION_VALUE;
for (size_t i = 0; i < count; i++) for (size_t i = 0; i < count; i++)
{ {

View File

@ -1,9 +1,13 @@
#pragma once #pragma once
#define MAX(a, b) ((a) > (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b))
#define AVG10_SAMPLE_SIZE 10U #define INITIALISATION_VALUE 0.0f
#define AVG60_SAMPLE_SIZE 60U #define AVG10S_SAMPLE_SIZE 10U
#define PRED60_SAMPLE_SIZE 60U #define AVG60S_SAMPLE_SIZE 60U
#define AVG24H_SAMPLE_SIZE 24U
#define PRED60S_SAMPLE_SIZE 60U
#define DAMPING_FACTOR_WARMER 0.00001f // 0.001%
#define DAMPING_FACTOR_COLDER 0.00005f // 0.005%
typedef enum _BurnerErrorState typedef enum _BurnerErrorState
{ {
@ -20,7 +24,7 @@ typedef enum _MeasurementErrorState
typedef struct _Average typedef struct _Average
{ {
float fValue; float fValue;
float samples[MAX(AVG10_SAMPLE_SIZE, AVG60_SAMPLE_SIZE)]; float samples[MAX(AVG10S_SAMPLE_SIZE, MAX(AVG60S_SAMPLE_SIZE, AVG24H_SAMPLE_SIZE))];
size_t bufferIndex; size_t bufferIndex;
size_t bufferCount; size_t bufferCount;
} sAverage; } sAverage;
@ -28,7 +32,7 @@ typedef struct _Average
typedef struct _Predict typedef struct _Predict
{ {
float fValue; float fValue;
float samples[PRED60_SAMPLE_SIZE]; float samples[PRED60S_SAMPLE_SIZE];
size_t bufferIndex; size_t bufferIndex;
size_t bufferCount; size_t bufferCount;
} sPredict; } sPredict;
@ -36,6 +40,7 @@ typedef struct _Predict
typedef struct _Measurement typedef struct _Measurement
{ {
float fCurrentValue; float fCurrentValue;
float fDampedValue;
sAverage average10s; sAverage average10s;
sAverage average60s; sAverage average60s;
sPredict predict60s; sPredict predict60s;

View File

@ -128,6 +128,12 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average60s.fValue; aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().average60s.fValue;
u16MetricCounter++; u16MetricCounter++;
// Chamber Temperature Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getChamberTemperature().fDampedValue;
u16MetricCounter++;
// Chamber Temperature Predict 60s // Chamber Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_pred60"); strcpy(aMetrics[u16MetricCounter].caMetricName, "chamber_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT; aMetrics[u16MetricCounter].type = FLOAT;
@ -152,6 +158,12 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average60s.fValue; aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().average60s.fValue;
u16MetricCounter++; u16MetricCounter++;
// Inlet Flow Temperature Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getInletFlowTemperature().fDampedValue;
u16MetricCounter++;
// Inlet Flow Temperature Predict 60s // Inlet Flow Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_pred60"); strcpy(aMetrics[u16MetricCounter].caMetricName, "inlet_flow_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT; aMetrics[u16MetricCounter].type = FLOAT;
@ -176,6 +188,12 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average60s.fValue; aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().average60s.fValue;
u16MetricCounter++; u16MetricCounter++;
// Outdoor Temperature Average Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getOutdoorTemperature().fDampedValue;
u16MetricCounter++;
// Outdoor Temperature Predict 60s // Outdoor Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_pred60"); strcpy(aMetrics[u16MetricCounter].caMetricName, "outdoor_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT; aMetrics[u16MetricCounter].type = FLOAT;
@ -200,6 +218,12 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average60s.fValue; aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().average60s.fValue;
u16MetricCounter++; u16MetricCounter++;
// Return Flow Temperature Damped
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_damped");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getReturnFlowTemperature().fDampedValue;
u16MetricCounter++;
// Return Flow Temperature Predict 60s // Return Flow Temperature Predict 60s
strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_pred60"); strcpy(aMetrics[u16MetricCounter].caMetricName, "return_flow_temperature_pred60");
aMetrics[u16MetricCounter].type = FLOAT; aMetrics[u16MetricCounter].type = FLOAT;
@ -230,6 +254,31 @@ void taskMetrics(void *pvParameters)
aMetrics[u16MetricCounter].u8MetricValue = getControlState(); aMetrics[u16MetricCounter].u8MetricValue = getControlState();
u16MetricCounter++; u16MetricCounter++;
// Control Current Weekday
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_weekday");
aMetrics[u16MetricCounter].type = INTEGER_U8;
aMetrics[u16MetricCounter].u8MetricValue = getControlCurrentWeekday();
u16MetricCounter++;
// Control Current Entry Time
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_entry_time");
aMetrics[u16MetricCounter].type = INTEGER_64;
int64_t i64SecondsSinceMidnight = (getControlCurrentTemperatureEntry().timestamp.hour * 60U * 60U) + (getControlCurrentTemperatureEntry().timestamp.minute * 60U);
aMetrics[u16MetricCounter].i64MetricValue = i64SecondsSinceMidnight;
u16MetricCounter++;
// Control Current Entry Chamber Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_entry_chamber_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getControlCurrentTemperatureEntry().fChamberTemperature;
u16MetricCounter++;
// Control Current Entry Return Flow Temperature
strcpy(aMetrics[u16MetricCounter].caMetricName, "control_current_entry_return_flow_temperature");
aMetrics[u16MetricCounter].type = FLOAT;
aMetrics[u16MetricCounter].fMetricValue = getControlCurrentTemperatureEntry().fReturnFlowTemperature;
u16MetricCounter++;
// SNTP State // SNTP State
strcpy(aMetrics[u16MetricCounter].caMetricName, "sntp_state"); strcpy(aMetrics[u16MetricCounter].caMetricName, "sntp_state");
aMetrics[u16MetricCounter].type = INTEGER_U8; aMetrics[u16MetricCounter].type = INTEGER_U8;
@ -252,22 +301,23 @@ void taskMetrics(void *pvParameters)
// Wifi RSSI // Wifi RSSI
wifi_ap_record_t ap; wifi_ap_record_t ap;
esp_wifi_sta_get_ap_info(&ap); ap.rssi = 0U;
ESP_ERROR_CHECK(esp_wifi_sta_get_ap_info(&ap));
strcpy(aMetrics[u16MetricCounter].caMetricName, "wifi_rssi"); strcpy(aMetrics[u16MetricCounter].caMetricName, "wifi_rssi");
aMetrics[u16MetricCounter].type = INTEGER_64; aMetrics[u16MetricCounter].type = INTEGER_64;
aMetrics[u16MetricCounter].i64MetricValue = ap.rssi; aMetrics[u16MetricCounter].i64MetricValue = ap.rssi;
u16MetricCounter++; u16MetricCounter++;
configASSERT(!(u16MetricCounter > METRIC_MAX_COUNT));
vSetMetrics(aMetrics, u16MetricCounter); vSetMetrics(aMetrics, u16MetricCounter);
} }
} }
void vSetMetrics(sMetric *paMetrics, uint16_t u16Size) void vSetMetrics(sMetric *paMetrics, uint16_t u16Size)
{ {
if (xSemaphoreTakeRecursive(xMutexAccessMetricResponse, pdMS_TO_TICKS(5000)) == pdTRUE) if (xSemaphoreTakeRecursive(xMutexAccessMetricResponse, pdMS_TO_TICKS(5000)) == pdTRUE)
{ {
memset(caHtmlResponse, 0U, strlen(caHtmlResponse)); memset(caHtmlResponse, 0U, HTML_RESPONSE_SIZE);
for (uint16_t u16Index = 0U; u16Index < u16Size; u16Index++) for (uint16_t u16Index = 0U; u16Index < u16Size; u16Index++)
{ {
char caValueBuffer[64]; char caValueBuffer[64];

View File

@ -4,7 +4,7 @@
#define HTML_RESPONSE_SIZE 4096U #define HTML_RESPONSE_SIZE 4096U
#define METRIC_NAME_MAX_SIZE 64U #define METRIC_NAME_MAX_SIZE 64U
#define METRIC_MAX_COUNT 32U #define METRIC_MAX_COUNT 38U
typedef enum _MetricValueType typedef enum _MetricValueType
{ {

View File

@ -41,9 +41,26 @@ void initOutputs(void)
.intr_type = GPIO_INTR_DISABLE // Disable interrupts .intr_type = GPIO_INTR_DISABLE // Disable interrupts
}; };
gpio_config(&ioConfCirculationPump); esp_err_t ret = gpio_config(&ioConfCirculationPump);
gpio_config(&ioConfBurner); if (ret != ESP_OK)
gpio_config(&ioConfSafetyContact); {
ESP_LOGE(TAG, "GPIO config failed: %s", esp_err_to_name(ret));
return;
}
ret = gpio_config(&ioConfBurner);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "GPIO config failed: %s", esp_err_to_name(ret));
return;
}
ret = gpio_config(&ioConfSafetyContact);
if (ret != ESP_OK)
{
ESP_LOGE(TAG, "GPIO config failed: %s", esp_err_to_name(ret));
return;
}
xMutexAccessOutputs = xSemaphoreCreateRecursiveMutex(); xMutexAccessOutputs = xSemaphoreCreateRecursiveMutex();
if (xMutexAccessOutputs == NULL) if (xMutexAccessOutputs == NULL)
@ -55,7 +72,17 @@ void initOutputs(void)
eOutput getCirculationPumpState(void) eOutput getCirculationPumpState(void)
{ {
return sCirculationPumpState; eOutput ret = ENABLED;
if (xSemaphoreTakeRecursive(xMutexAccessOutputs, pdMS_TO_TICKS(5000)) == pdTRUE)
{
ret = sCirculationPumpState;
xSemaphoreGiveRecursive(xMutexAccessOutputs);
}
else
{
ESP_LOGE(TAG, "Unable to take mutex: getCirculationPumpState()");
}
return ret;
} }
void setCirculationPumpState(eOutput in) void setCirculationPumpState(eOutput in)
@ -70,6 +97,7 @@ void setCirculationPumpState(eOutput in)
break; break;
case DISABLED: case DISABLED:
gpio_set_level(uCirculationPumpGpioPin, 1U); // Switch off Circulation Pump gpio_set_level(uCirculationPumpGpioPin, 1U); // Switch off Circulation Pump
break;
default: default:
break; break;
} }
@ -108,6 +136,7 @@ void setBurnerState(eOutput in)
break; break;
case DISABLED: case DISABLED:
gpio_set_level(uBurnerGpioPin, 1U); // Switch off Burner gpio_set_level(uBurnerGpioPin, 1U); // Switch off Burner
break;
default: default:
break; break;
} }
@ -146,6 +175,7 @@ void setSafetyControlState(eOutput in)
break; break;
case DISABLED: case DISABLED:
gpio_set_level(uSafetyContactGpioPin, 1U); // Switch off power for Burner gpio_set_level(uSafetyContactGpioPin, 1U); // Switch off power for Burner
break;
default: default:
break; break;
} }

View File

@ -2,10 +2,12 @@
#include "freertos/task.h" #include "freertos/task.h"
#include "esp_log.h" #include "esp_log.h"
#include <string.h> #include <string.h>
#include <math.h>
#include "safety.h" #include "safety.h"
#define PERIODIC_INTERVAL 1U // run safety checks every 1sec #define PERIODIC_INTERVAL 1U // run safety checks every 1sec
#define SENSOR_GRACE_PERIOD (60U * 30U) // period that a sensor can report the same reading in seconds #define SENSOR_GRACE_PERIOD (60U * 30U) // period that a sensor can report the same reading in seconds
#define FLOAT_EPSILON 0.0001f
static const char *TAG = "smart-oil-heater-control-system-safety"; static const char *TAG = "smart-oil-heater-control-system-safety";
static SemaphoreHandle_t xMutexAccessSafety = NULL; static SemaphoreHandle_t xMutexAccessSafety = NULL;
@ -85,13 +87,13 @@ void checkSensorSanity(void)
if (sCurrentMeasurement.state == MEASUREMENT_FAULT) if (sCurrentMeasurement.state == MEASUREMENT_FAULT)
{ {
//ESP_LOGE(TAG, "%s Sensor not found!", sanityChecks[i].name); ESP_LOGE(TAG, "%s Sensor not found!", sanityChecks[i].name);
sanityChecks[i].state = SENSOR_NOT_FOUND; sanityChecks[i].state = SENSOR_NOT_FOUND;
sSafetyState = SAFETY_SENSOR_ERROR; sSafetyState = SAFETY_SENSOR_ERROR;
} }
else else
{ {
if (sCurrentMeasurement.fCurrentValue == sanityChecks[i].fSensorTemperatureLast) if (fabsf(sCurrentMeasurement.fCurrentValue - sanityChecks[i].fSensorTemperatureLast) < FLOAT_EPSILON)
{ {
sanityChecks[i].uUnchangedCounter++; sanityChecks[i].uUnchangedCounter++;
if (sanityChecks[i].uUnchangedCounter >= (SENSOR_GRACE_PERIOD / PERIODIC_INTERVAL)) if (sanityChecks[i].uUnchangedCounter >= (SENSOR_GRACE_PERIOD / PERIODIC_INTERVAL))
@ -103,6 +105,7 @@ void checkSensorSanity(void)
} }
else else
{ {
sanityChecks[i].uUnchangedCounter = 0U;
sanityChecks[i].fSensorTemperatureLast = sCurrentMeasurement.fCurrentValue; sanityChecks[i].fSensorTemperatureLast = sCurrentMeasurement.fCurrentValue;
if (sCurrentMeasurement.fCurrentValue > sanityChecks[i].sSensorLimit.max) if (sCurrentMeasurement.fCurrentValue > sanityChecks[i].sSensorLimit.max)
@ -119,12 +122,10 @@ void checkSensorSanity(void)
} }
else else
{ {
sanityChecks[i].uUnchangedCounter = 0U;
sanityChecks[i].state = SENSOR_NO_ERROR; sanityChecks[i].state = SENSOR_NO_ERROR;
} }
} }
} }
// printf(" state: %u\n", sanityChecks[i].state);
} }
} }
@ -143,7 +144,7 @@ void getSensorSanityStates(sSensorSanityCheck *pSensorSanityChecks)
{ {
// Copy only the needed attributes // Copy only the needed attributes
pSensorSanityChecks[i].state = sanityChecks[i].state; pSensorSanityChecks[i].state = sanityChecks[i].state;
strcpy(pSensorSanityChecks[i].name, sanityChecks[i].name); strncpy(pSensorSanityChecks[i].name, sanityChecks[i].name, MAX_ERROR_STRING_SIZE);
} }
xSemaphoreGiveRecursive(xMutexAccessSafety); xSemaphoreGiveRecursive(xMutexAccessSafety);
} }

View File

@ -6,7 +6,7 @@
#include "sntp.h" #include "sntp.h"
static const char *TAG = "smart-oil-heater-control-system-sntp"; static const char *TAG = "smart-oil-heater-control-system-sntp";
static eSntpState sntpState = SYNC_NOT_STARTED; static volatile eSntpState sntpState = SYNC_NOT_STARTED;
void time_sync_notification_cb(struct timeval *tv); void time_sync_notification_cb(struct timeval *tv);
void initSntp(void) void initSntp(void)

View File

@ -13,26 +13,37 @@
#define WIFI_CONNECTED_BIT BIT0 #define WIFI_CONNECTED_BIT BIT0
#define WIFI_FAIL_BIT BIT1 #define WIFI_FAIL_BIT BIT1
#define MAX_RETRY_COUNT 10
#define RETRY_DELAY_MS 1000
static const char *TAG = "smart-oil-heater-control-system-wifi"; static const char *TAG = "smart-oil-heater-control-system-wifi";
static EventGroupHandle_t s_wifi_event_group; static EventGroupHandle_t s_wifi_event_group;
static int s_retry_num = 0;
static bool s_initial_connect = true;
static void event_handler(void *arg, esp_event_base_t event_base, static void event_handler(void *arg, esp_event_base_t event_base,
int32_t event_id, void *event_data); int32_t event_id, void *event_data);
void initWifi(void) void initWifi(void)
{ {
s_wifi_event_group = xEventGroupCreate(); s_wifi_event_group = xEventGroupCreate();
if (s_wifi_event_group == NULL)
{
ESP_LOGE(TAG, "xEventGroupCreate() failed!");
return;
}
ESP_ERROR_CHECK(esp_netif_init()); ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default()); ESP_ERROR_CHECK(esp_event_loop_create_default());
esp_netif_t *my_sta = esp_netif_create_default_wifi_sta(); esp_netif_t *my_sta = esp_netif_create_default_wifi_sta();
esp_netif_dhcpc_stop(my_sta); ESP_ERROR_CHECK(esp_netif_dhcpc_stop(my_sta));
esp_netif_ip_info_t ip_info; esp_netif_ip_info_t ip_info;
ip_info.ip.addr = ipaddr_addr(CONFIG_STATIC_IP_ADDR); ip_info.ip.addr = ipaddr_addr(CONFIG_STATIC_IP_ADDR);
ip_info.gw.addr = ipaddr_addr(CONFIG_STATIC_GATEWAY_IP_ADDR); ip_info.gw.addr = ipaddr_addr(CONFIG_STATIC_GATEWAY_IP_ADDR);
ip_info.netmask.addr = ipaddr_addr(CONFIG_STATIC_IP_NETMASK); ip_info.netmask.addr = ipaddr_addr(CONFIG_STATIC_IP_NETMASK);
esp_netif_set_ip_info(my_sta, &ip_info); ESP_ERROR_CHECK(esp_netif_set_ip_info(my_sta, &ip_info));
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT(); wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg)); ESP_ERROR_CHECK(esp_wifi_init(&cfg));
@ -84,7 +95,9 @@ void initWifi(void)
{ {
ESP_LOGE(TAG, "Unexpected event"); ESP_LOGE(TAG, "Unexpected event");
} }
vEventGroupDelete(s_wifi_event_group);
// Mark initial connection phase complete - do NOT delete the event group
s_initial_connect = false;
} }
static void event_handler(void *arg, esp_event_base_t event_base, static void event_handler(void *arg, esp_event_base_t event_base,
@ -96,13 +109,46 @@ static void event_handler(void *arg, esp_event_base_t event_base,
} }
else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED)
{ {
esp_wifi_connect(); wifi_event_sta_disconnected_t *event = (wifi_event_sta_disconnected_t *)event_data;
ESP_LOGI(TAG, "Retry to connect to the AP"); ESP_LOGW(TAG, "Disconnected from AP (reason: %d)", event->reason);
if (s_initial_connect)
{
// During initial connection phase, use retry limit
if (s_retry_num < MAX_RETRY_COUNT)
{
vTaskDelay(pdMS_TO_TICKS(RETRY_DELAY_MS));
esp_wifi_connect();
s_retry_num++;
ESP_LOGI(TAG, "Retry to connect to the AP (%d/%d)", s_retry_num, MAX_RETRY_COUNT);
}
else
{
xEventGroupSetBits(s_wifi_event_group, WIFI_FAIL_BIT);
ESP_LOGE(TAG, "Failed to connect after %d attempts", MAX_RETRY_COUNT);
}
}
else
{
// After initial connection, always try to reconnect with delay
vTaskDelay(pdMS_TO_TICKS(RETRY_DELAY_MS));
esp_wifi_connect();
ESP_LOGI(TAG, "Attempting to reconnect to the AP...");
}
} }
else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP)
{ {
ip_event_got_ip_t *event = (ip_event_got_ip_t *)event_data; ip_event_got_ip_t *event = (ip_event_got_ip_t *)event_data;
ESP_LOGI(TAG, "Got ip:" IPSTR, IP2STR(&event->ip_info.ip)); ESP_LOGI(TAG, "Got ip:" IPSTR, IP2STR(&event->ip_info.ip));
xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT); s_retry_num = 0;
if (s_initial_connect)
{
xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);
}
else
{
ESP_LOGI(TAG, "Successfully reconnected to AP");
}
} }
} }