Compare commits

..

No commits in common. "main" and "testing/lab-temperature-sensor" have entirely different histories.

2 changed files with 15 additions and 22 deletions

View File

@ -12,7 +12,7 @@
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0
#define CHAMPER_TEMPERATURE_TARGET 80.0
#define CHAMPER_TEMPERATURE_TARGET 70.0
#define BURNER_FAULT_DETECTION_THRESHOLD (60U * 3U) // Detect burner fault if after 3 minutes no burner start detected
static const char *TAG = "smart-oil-heater-control-system-control";
@ -98,7 +98,7 @@ void taskControl(void *pvParameters)
if (bHeatingInAction == true)
{
if ((getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature) || (getChamberTemperature().predict60s.fValue >= currentControlEntry.fChamberTemperature))
if (getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature)
{
ESP_LOGI(TAG, "Chamber Target Temperature reached: Disable burner");
bHeatingInAction = false;

View File

@ -16,10 +16,10 @@ static const char *TAG = "smart-oil-heater-control-system-inputs";
const uint8_t uBurnerFaultPin = 19U;
const uint8_t uDS18B20Pin = 4U;
const onewire_addr_t uChamperTempSensorAddr = 0xd00000108cd01d28;
const onewire_addr_t uChamperTempSensorAddr = 0x78000000c6c2f728;
const onewire_addr_t uOutdoorTempSensorAddr = 0x78000000c6c2f728;
const onewire_addr_t uInletFlowTempSensorAddr = 0x410000108b8c0628;
const onewire_addr_t uReturnFlowTempSensorAddr = 0x90000108cc77c28;
const onewire_addr_t uInletFlowTempSensorAddr = 0x78000000c6c2f728;
const onewire_addr_t uReturnFlowTempSensorAddr = 0x78000000c6c2f728;
onewire_addr_t uOneWireAddresses[MAX_DN18B20_SENSORS];
float fDS18B20Temps[MAX_DN18B20_SENSORS];
@ -36,7 +36,7 @@ void taskInput(void *pvParameters);
void initMeasurement(sMeasurement *pMeasurement);
void updateAverage(sMeasurement *pMeasurement);
void updatePrediction(sMeasurement *pMeasurement);
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex);
float linearRegressionPredict(const float *samples, size_t count, float futureIndex);
void initInputs(void)
{
@ -162,7 +162,6 @@ void updatePrediction(sMeasurement *pMeasurement)
predict60s->fValue = linearRegressionPredict(
predict60s->samples,
predict60s->bufferCount,
predict60s->bufferIndex,
predict60s->bufferCount + 60.0f);
}
@ -218,7 +217,7 @@ void taskInput(void *pvParameters)
for (int j = 0; j < sSensorCount; j++)
{
float temp_c = fDS18B20Temps[j];
// ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c);
ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c);
switch ((uint64_t)uOneWireAddresses[j])
{
@ -227,20 +226,17 @@ void taskInput(void *pvParameters)
sChamperTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sChamperTemperature);
updatePrediction(&sChamperTemperature);
break;
case ((uint64_t)uOutdoorTempSensorAddr):
sOutdoorTemperature.fCurrentValue = temp_c;
sOutdoorTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sOutdoorTemperature);
updatePrediction(&sOutdoorTemperature);
break;
case ((uint64_t)uInletFlowTempSensorAddr):
sInletFlowTemperature.fCurrentValue = temp_c;
sInletFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sInletFlowTemperature);
updatePrediction(&sInletFlowTemperature);
break;
case ((uint64_t)uReturnFlowTempSensorAddr):
sReturnFlowTemperature.fCurrentValue = temp_c;
sReturnFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sReturnFlowTemperature);
@ -268,7 +264,7 @@ void taskInput(void *pvParameters)
}
}
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex)
float linearRegressionPredict(const float *samples, size_t count, float futureIndex)
{
if (count == 0)
return 0.0f; // No prediction possible with no data
@ -277,11 +273,8 @@ float linearRegressionPredict(const float *samples, size_t count, size_t bufferI
for (size_t i = 0; i < count; i++)
{
// Calculate the circular buffer index for the current sample
size_t circularIndex = (bufferIndex + i + 1) % count;
float x = (float)i; // Time index
float y = samples[circularIndex]; // Sample value
float x = (float)i; // Time index
float y = samples[i]; // Sample value
sumX += x;
sumY += y;
@ -291,8 +284,8 @@ float linearRegressionPredict(const float *samples, size_t count, size_t bufferI
// Calculate slope (m) and intercept (b) of the line: y = mx + b
float denominator = (count * sumX2 - sumX * sumX);
if (fabs(denominator) < 1e-6) // Avoid division by zero
return samples[bufferIndex]; // Return the latest value as prediction
if (fabs(denominator) < 1e-6) // Avoid division by zero
return samples[count - 1]; // Return last value as prediction
float m = (count * sumXY - sumX * sumY) / denominator;
float b = (sumY - m * sumX) / count;