This commit is contained in:
2025-12-20 21:21:09 +01:00
parent 22060cf026
commit 852211e749
3 changed files with 5 additions and 411 deletions

View File

@ -9,8 +9,6 @@ A web-based tool for finding the optimal cell configuration in lithium battery p
- **Pack Configuration**: Support for any SxP configuration (e.g., 6S2P, 4S3P, 12S4P)
- **Cell Matching**: Optimize by capacity (mAh) and internal resistance (mΩ)
- **Multiple Algorithms**:
- Genetic Algorithm (fast, recommended)
- Simulated Annealing (good for escaping local minima)
- Exhaustive Search (optimal for small configurations)
- **Surplus Cell Support**: Use more cells than needed; the algorithm selects the best subset
- **Live Progress**: Watch the optimization in real-time

View File

@ -112,9 +112,9 @@
<div class="form-group">
<label for="algorithm-select">Algorithm</label>
<select id="algorithm-select">
<option value="genetic">Genetic Algorithm (Fast)</option>
<option value="simulated-annealing">Simulated Annealing</option>
<option value="exhaustive">Exhaustive (Small packs only)</option>
<option value="exhaustive">Exhaustive Search (Small packs only)</option>
<option value="genetic" disabled>Genetic Algorithm (Fast)</option>
<option value="simulated-annealing" disabled>Simulated Annealing</option>
</select>
</div>
<div class="form-group">
@ -313,7 +313,8 @@
<a href="https://git.mosad.xyz/localhorst/LiXX_Cell_Pack_Matcher" target="_blank" rel="noopener">Git</a>
·
Based on research by
<a href="https://doi.org/10.1016/j.jpowsour.2013.11.064" target="_blank" rel="noopener">Wang et al., 2013</a>
<a href="https://doi.org/10.1016/j.jpowsour.2013.11.064" target="_blank" rel="noopener">Wang et al.,
2013</a>
</p>
<p class="disclaimer">
This tool is for educational purposes. Always consult professional guidance for battery pack assembly.

View File

@ -122,411 +122,6 @@ class StatsTracker {
}
}
// =============================================================================
// Genetic Algorithm
// =============================================================================
class GeneticAlgorithm {
constructor(cells, serial, parallel, options = {}) {
this.cells = cells;
this.serial = serial;
this.parallel = parallel;
this.totalCellsNeeded = serial * parallel;
this.populationSize = options.populationSize || 50;
this.maxIterations = options.maxIterations || 5000;
this.mutationRate = options.mutationRate || 0.15;
this.eliteCount = options.eliteCount || 5;
this.capacityWeight = options.capacityWeight ?? 0.7;
this.irWeight = options.irWeight ?? 0.3;
this.stopped = false;
this.bestSolution = null;
this.bestScore = Infinity;
this.stats = new StatsTracker();
}
stop() {
this.stopped = true;
}
createIndividual(cellPool) {
const shuffled = shuffleArray([...cellPool]).slice(0, this.totalCellsNeeded);
const configuration = [];
for (let i = 0; i < this.serial; i++) {
const group = [];
for (let j = 0; j < this.parallel; j++) {
group.push(shuffled[i * this.parallel + j]);
}
configuration.push(group);
}
return configuration;
}
configToIndices(config) {
const flat = config.flat();
return flat.map(cell => this.cells.findIndex(c => c.label === cell.label));
}
indicesToConfig(indices) {
const configuration = [];
for (let i = 0; i < this.serial; i++) {
const group = [];
for (let j = 0; j < this.parallel; j++) {
const idx = indices[i * this.parallel + j];
// Safety check: ensure index is valid
if (idx >= 0 && idx < this.cells.length) {
group.push(this.cells[idx]);
} else {
// Fallback: use a random valid cell
group.push(this.cells[Math.floor(Math.random() * this.cells.length)]);
}
}
configuration.push(group);
}
return configuration;
}
crossover(parent1, parent2) {
// Simple two-point crossover with repair
const length = parent1.length;
// 50% chance to just return a copy of one parent (with shuffle)
if (Math.random() < 0.5) {
const child = [...parent1];
// Swap a few random positions
for (let i = 0; i < 2; i++) {
const a = Math.floor(Math.random() * length);
const b = Math.floor(Math.random() * length);
[child[a], child[b]] = [child[b], child[a]];
}
return child;
}
// Otherwise, take half from each parent and repair duplicates
const midpoint = Math.floor(length / 2);
const child = [...parent1.slice(0, midpoint), ...parent2.slice(midpoint)];
// Find and fix duplicates
const seen = new Set();
const duplicatePositions = [];
const allIndices = new Set(parent1.concat(parent2));
for (let i = 0; i < child.length; i++) {
if (seen.has(child[i])) {
duplicatePositions.push(i);
} else {
seen.add(child[i]);
}
}
// Find missing indices
const missing = [];
for (const idx of allIndices) {
if (!seen.has(idx)) {
missing.push(idx);
}
}
// Replace duplicates with missing values
for (let i = 0; i < duplicatePositions.length && i < missing.length; i++) {
child[duplicatePositions[i]] = missing[i];
}
return child;
}
mutate(indices, unusedCells) {
const mutated = [...indices];
if (Math.random() < this.mutationRate) {
if (unusedCells.length > 0 && Math.random() < 0.3) {
const replaceIdx = Math.floor(Math.random() * mutated.length);
const unusedCell = unusedCells[Math.floor(Math.random() * unusedCells.length)];
const unusedIdx = this.cells.findIndex(c => c.label === unusedCell.label);
mutated[replaceIdx] = unusedIdx;
} else {
const i = Math.floor(Math.random() * mutated.length);
const j = Math.floor(Math.random() * mutated.length);
[mutated[i], mutated[j]] = [mutated[j], mutated[i]];
}
}
return mutated;
}
run() {
// Initialize population
let population = [];
for (let i = 0; i < this.populationSize; i++) {
population.push(this.createIndividual(this.cells));
}
// Evaluate initial population
let evaluated = population.map(config => ({
config,
indices: this.configToIndices(config),
...calculateScore(config, this.capacityWeight, this.irWeight)
}));
evaluated.sort((a, b) => a.score - b.score);
if (evaluated[0].score < this.bestScore) {
this.bestScore = evaluated[0].score;
this.bestSolution = evaluated[0];
}
// Calculate total combinations for display
const totalCombinations = this.factorial(this.cells.length) /
(this.factorial(this.cells.length - this.totalCellsNeeded) *
Math.pow(this.factorial(this.parallel), this.serial) *
this.factorial(this.serial));
// Main evolution loop
for (let iteration = 0; iteration < this.maxIterations && !this.stopped; iteration++) {
const newPopulation = [];
// Keep elite individuals
for (let i = 0; i < this.eliteCount && i < evaluated.length; i++) {
newPopulation.push(evaluated[i].indices);
}
// Generate rest through crossover and mutation
while (newPopulation.length < this.populationSize) {
const tournament1 = evaluated.slice(0, Math.ceil(evaluated.length / 2));
const tournament2 = evaluated.slice(0, Math.ceil(evaluated.length / 2));
const parent1 = tournament1[Math.floor(Math.random() * tournament1.length)];
const parent2 = tournament2[Math.floor(Math.random() * tournament2.length)];
let child = this.crossover(parent1.indices, parent2.indices);
// Safety: ensure all indices are valid
child = child.map(idx => {
if (idx >= 0 && idx < this.cells.length) return idx;
return Math.floor(Math.random() * this.cells.length);
});
const usedLabels = new Set(child.map(idx => this.cells[idx].label));
const unusedCells = this.cells.filter(c => !usedLabels.has(c.label));
child = this.mutate(child, unusedCells);
newPopulation.push(child);
}
// Evaluate new population
evaluated = newPopulation.map(indices => {
const config = this.indicesToConfig(indices);
return {
config,
indices,
...calculateScore(config, this.capacityWeight, this.irWeight)
};
});
evaluated.sort((a, b) => a.score - b.score);
if (evaluated[0].score < this.bestScore) {
this.bestScore = evaluated[0].score;
this.bestSolution = evaluated[0];
}
this.stats.recordIteration();
// Send progress update every 10 iterations
if (iteration % 10 === 0 || iteration === this.maxIterations - 1) {
const stats = this.stats.getStats(iteration, this.maxIterations);
self.postMessage({
type: 'progress',
data: {
iteration,
maxIterations: this.maxIterations,
bestScore: this.bestScore,
currentBest: this.bestSolution,
totalCombinations,
evaluatedCombinations: (iteration + 1) * this.populationSize,
...stats
}
});
}
}
const usedLabels = new Set(this.bestSolution.config.flat().map(c => c.label));
const excludedCells = this.cells.filter(c => !usedLabels.has(c.label));
return {
configuration: this.bestSolution.config,
score: this.bestScore,
capacityCV: this.bestSolution.capacityCV,
irCV: this.bestSolution.irCV,
groupCapacities: this.bestSolution.groupCapacities,
excludedCells,
iterations: this.maxIterations,
elapsedTime: Date.now() - this.stats.startTime
};
}
factorial(n) {
if (n <= 1) return 1;
if (n > 20) return Infinity; // Prevent overflow
let result = 1;
for (let i = 2; i <= n; i++) result *= i;
return result;
}
}
// =============================================================================
// Simulated Annealing
// =============================================================================
class SimulatedAnnealing {
constructor(cells, serial, parallel, options = {}) {
this.cells = cells;
this.serial = serial;
this.parallel = parallel;
this.totalCellsNeeded = serial * parallel;
this.maxIterations = options.maxIterations || 5000;
this.initialTemp = options.initialTemp || 100;
this.coolingRate = options.coolingRate || 0.995;
this.capacityWeight = options.capacityWeight ?? 0.7;
this.irWeight = options.irWeight ?? 0.3;
this.stopped = false;
this.bestSolution = null;
this.bestScore = Infinity;
this.stats = new StatsTracker();
}
stop() {
this.stopped = true;
}
createInitialConfig() {
const shuffled = shuffleArray([...this.cells]).slice(0, this.totalCellsNeeded);
const configuration = [];
for (let i = 0; i < this.serial; i++) {
const group = [];
for (let j = 0; j < this.parallel; j++) {
group.push(shuffled[i * this.parallel + j]);
}
configuration.push(group);
}
return configuration;
}
getNeighbor(config) {
const newConfig = cloneConfiguration(config);
const usedLabels = new Set(config.flat().map(c => c.label));
const unusedCells = this.cells.filter(c => !usedLabels.has(c.label));
const moveType = Math.random();
if (unusedCells.length > 0 && moveType < 0.3) {
const groupIdx = Math.floor(Math.random() * this.serial);
const cellIdx = Math.floor(Math.random() * this.parallel);
const unusedCell = unusedCells[Math.floor(Math.random() * unusedCells.length)];
newConfig[groupIdx][cellIdx] = unusedCell;
} else if (moveType < 0.65) {
const group1 = Math.floor(Math.random() * this.serial);
let group2 = Math.floor(Math.random() * this.serial);
while (group2 === group1 && this.serial > 1) {
group2 = Math.floor(Math.random() * this.serial);
}
const cell1 = Math.floor(Math.random() * this.parallel);
const cell2 = Math.floor(Math.random() * this.parallel);
const temp = newConfig[group1][cell1];
newConfig[group1][cell1] = newConfig[group2][cell2];
newConfig[group2][cell2] = temp;
} else {
const groupIdx = Math.floor(Math.random() * this.serial);
if (this.parallel >= 2) {
const cell1 = Math.floor(Math.random() * this.parallel);
let cell2 = Math.floor(Math.random() * this.parallel);
while (cell2 === cell1) {
cell2 = Math.floor(Math.random() * this.parallel);
}
const temp = newConfig[groupIdx][cell1];
newConfig[groupIdx][cell1] = newConfig[groupIdx][cell2];
newConfig[groupIdx][cell2] = temp;
}
}
return newConfig;
}
run() {
let current = this.createInitialConfig();
let currentScore = calculateScore(current, this.capacityWeight, this.irWeight);
this.bestSolution = { config: cloneConfiguration(current), ...currentScore };
this.bestScore = currentScore.score;
let temperature = this.initialTemp;
let acceptedMoves = 0;
let totalMoves = 0;
for (let iteration = 0; iteration < this.maxIterations && !this.stopped; iteration++) {
const neighbor = this.getNeighbor(current);
const neighborScore = calculateScore(neighbor, this.capacityWeight, this.irWeight);
const delta = neighborScore.score - currentScore.score;
totalMoves++;
if (delta < 0 || Math.random() < Math.exp(-delta / temperature)) {
current = neighbor;
currentScore = neighborScore;
acceptedMoves++;
if (currentScore.score < this.bestScore) {
this.bestScore = currentScore.score;
this.bestSolution = { config: cloneConfiguration(current), ...currentScore };
}
}
temperature *= this.coolingRate;
this.stats.recordIteration();
if (iteration % 50 === 0 || iteration === this.maxIterations - 1) {
const stats = this.stats.getStats(iteration, this.maxIterations);
self.postMessage({
type: 'progress',
data: {
iteration,
maxIterations: this.maxIterations,
bestScore: this.bestScore,
currentBest: this.bestSolution,
temperature,
acceptanceRate: totalMoves > 0 ? (acceptedMoves / totalMoves * 100) : 0,
evaluatedCombinations: iteration + 1,
...stats
}
});
}
}
const usedLabels = new Set(this.bestSolution.config.flat().map(c => c.label));
const excludedCells = this.cells.filter(c => !usedLabels.has(c.label));
return {
configuration: this.bestSolution.config,
score: this.bestScore,
capacityCV: this.bestSolution.capacityCV,
irCV: this.bestSolution.irCV,
groupCapacities: this.bestSolution.groupCapacities,
excludedCells,
iterations: this.maxIterations,
elapsedTime: Date.now() - this.stats.startTime
};
}
}
// =============================================================================
// Exhaustive Search
// =============================================================================