10 Commits

Author SHA256 Message Date
a72c0673b1 Improve efficiency (#21)
- Change to new One Wire Sensors that are no fakes
- Increase chamber temperature

Reviewed-on: #21
Co-authored-by: localhorst <localhorst@mosad.xyz>
Co-committed-by: localhorst <localhorst@mosad.xyz>
2025-02-08 20:05:14 +01:00
999af9d888 Merge pull request 'bugfix/linear-regression-prediction' (#19) from bugfix/linear-regression-prediction into main
Reviewed-on: #19
2024-12-26 22:47:35 +01:00
8a8bcd078b disable log 2024-12-26 22:47:12 +01:00
59b8c3e2b2 revert lab setup 2024-12-26 22:46:30 +01:00
06c6612ef6 fix algo 2024-12-26 22:40:20 +01:00
e790660c36 Merge branch 'main' into testing/lab-temperature-sensor 2024-12-26 22:19:41 +01:00
3c972296ce update example metric 2024-12-26 20:47:21 +01:00
8672241151 Merge pull request 'detect burner fault' (#17) from feature/burner-fault-detection into main
Reviewed-on: #17
2024-12-26 20:37:50 +01:00
25b0a11694 fix detection state 2024-12-26 20:37:19 +01:00
effd5c19e9 detect burner fault 2024-12-26 20:27:42 +01:00
4 changed files with 80 additions and 48 deletions

View File

@ -77,31 +77,35 @@ Sntp <|-- Metrics
#### Example
```
burner_fault_pending 1
circulation_pump_enabled 0
burner_enabled 1
safety_contact_enabled 1
chamber_temperature 21.812500
chamber_temperature_avg10 21.837500
chamber_temperature_avg60 21.825521
inlet_flow_temperature 22.437500
inlet_flow_temperature_avg10 22.437500
inlet_flow_temperature_avg60 22.434896
outdoor_temperature 21.937500
outdoor_temperature_avg10 21.937500
outdoor_temperature_avg60 21.933594
return_flow_temperature 22.375000
return_flow_temperature_avg10 22.375000
return_flow_temperature_avg60 22.375000
circulation_pump_enabled 1
burner_enabled 0
safety_contact_enabled 0
chamber_temperature 58.750000
chamber_temperature_avg10 58.931252
chamber_temperature_avg60 59.190475
chamber_temperature_pred60 55.870998
inlet_flow_temperature 53.875000
inlet_flow_temperature_avg10 53.900002
inlet_flow_temperature_avg60 53.994320
inlet_flow_temperature_pred60 52.848743
outdoor_temperature 18.000000
outdoor_temperature_avg10 18.006250
outdoor_temperature_avg60 18.002840
outdoor_temperature_pred60 18.050785
return_flow_temperature 48.625000
return_flow_temperature_avg10 48.718750
return_flow_temperature_avg60 48.846592
return_flow_temperature_pred60 47.383083
chamber_temperature_state 0
outdoor_temperature_state 0
inlet_flow_temperature_state 0
return_flow_temperature_state 0
safety_state 0
control_state 5
control_state 3
sntp_state 0
system_unixtime 1734814285
uptime_seconds 90
wifi_rssi -63
system_unixtime 1735242392
uptime_seconds 40
wifi_rssi -74
```
#### Status Encoding
@ -132,12 +136,12 @@ wifi_rssi -63
- control_state
| Enum eControlState in [control.h](main/control.h) | Value | Description |
|---------------------------------------------------|-------|------------------------------------|
|---------------------------------------------------|-------|--------------------------------------------------|
| CONTROL_STARTING | 0 | |
| CONTROL_HEATING | 1 | Burner running |
| CONTROL_OUTDOOR_TOO_WARM | 2 | Heating not needed |
| CONTROL_RETURN_FLOW_TOO_WARM | 3 | Heating not needed |
| CONTROL_BURNER_FAULT | 4 | Burner reported fault |
| CONTROL_FAULT_BURNER | 4 | Burner reported fault after threshold is reached |
| CONTROL_FAULT_SAFETY | 5 | Unable to control due safety fault |
| CONTROL_FAULT_SNTP | 6 | Unable to control due SNTP fault |

View File

@ -1,5 +1,6 @@
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_timer.h"
#include "esp_log.h"
#include "control.h"
#include "outputs.h"
@ -11,7 +12,8 @@
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_DAY 30.0
#define RETURN_FLOW_TEMPERATURE_LOWER_LIMIT_NIGHT 25.0
#define CHAMPER_TEMPERATURE_TARGET 70.0
#define CHAMPER_TEMPERATURE_TARGET 80.0
#define BURNER_FAULT_DETECTION_THRESHOLD (60U * 3U) // Detect burner fault if after 3 minutes no burner start detected
static const char *TAG = "smart-oil-heater-control-system-control";
static eControlState sControlState = CONTROL_STARTING;
@ -54,6 +56,9 @@ void initControl(void)
void taskControl(void *pvParameters)
{
bool bHeatingInAction = false;
bool bBurnerFaultDetected = false;
int64_t i64BurnerEnableTimestamp = esp_timer_get_time();
while (1)
{
vTaskDelay(PERIODIC_INTERVAL * 1000U / portTICK_PERIOD_MS);
@ -64,7 +69,7 @@ void taskControl(void *pvParameters)
sControlState = CONTROL_FAULT_SAFETY;
if (bHeatingInAction == true)
{
ESP_LOGI(TAG, "Control not possible due to safety fault: Disable burner");
ESP_LOGW(TAG, "Control not possible due to safety fault: Disable burner");
bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED);
@ -79,7 +84,7 @@ void taskControl(void *pvParameters)
sControlState = CONTROL_FAULT_SNTP;
if (bHeatingInAction == true)
{
ESP_LOGI(TAG, "Control not possible due to sntp fault: Disable burner");
ESP_LOGW(TAG, "Control not possible due to sntp fault: Disable burner");
bHeatingInAction = false;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED);
@ -93,7 +98,7 @@ void taskControl(void *pvParameters)
if (bHeatingInAction == true)
{
if (getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature)
if ((getChamberTemperature().fCurrentValue >= currentControlEntry.fChamberTemperature) || (getChamberTemperature().predict60s.fValue >= currentControlEntry.fChamberTemperature))
{
ESP_LOGI(TAG, "Chamber Target Temperature reached: Disable burner");
bHeatingInAction = false;
@ -105,12 +110,27 @@ void taskControl(void *pvParameters)
{
if (bHeatingInAction)
{
// TODO: Check burner fault signal here
int64_t i64Delta = esp_timer_get_time() - i64BurnerEnableTimestamp;
if ((i64Delta / 1000000U) >= BURNER_FAULT_DETECTION_THRESHOLD)
{
if (getBurnerError() == FAULT)
{
ESP_LOGW(TAG, "Detected burner fault after %lli seconds!", (i64Delta / 1000000U));
ESP_LOGW(TAG, "Control not possible due to burner fault: Disable burner");
sControlState = CONTROL_FAULT_BURNER;
bHeatingInAction = false;
bBurnerFaultDetected = true;
setCirculationPumpState(ENABLED);
setBurnerState(DISABLED);
setSafetyControlState(ENABLED);
}
}
}
}
}
if (bHeatingInAction == false)
if ((bHeatingInAction == false) && (bBurnerFaultDetected == false))
{
if ((getReturnFlowTemperature().average60s.fValue <= currentControlEntry.fReturnFlowTemperature) && (getChamberTemperature().fCurrentValue <= 45.0))
{
@ -119,6 +139,7 @@ void taskControl(void *pvParameters)
setCirculationPumpState(ENABLED);
setBurnerState(ENABLED);
setSafetyControlState(ENABLED);
i64BurnerEnableTimestamp = esp_timer_get_time();
sControlState = CONTROL_HEATING;
}
else

View File

@ -9,7 +9,7 @@ typedef enum _ControlState
CONTROL_HEATING,
CONTROL_OUTDOOR_TOO_WARM,
CONTROL_RETURN_FLOW_TOO_WARM,
CONTROL_BURNER_FAULT,
CONTROL_FAULT_BURNER,
CONTROL_FAULT_SAFETY,
CONTROL_FAULT_SNTP,
} eControlState;

View File

@ -16,10 +16,10 @@ static const char *TAG = "smart-oil-heater-control-system-inputs";
const uint8_t uBurnerFaultPin = 19U;
const uint8_t uDS18B20Pin = 4U;
const onewire_addr_t uChamperTempSensorAddr = 0x78000000c6c2f728;
const onewire_addr_t uChamperTempSensorAddr = 0xd00000108cd01d28;
const onewire_addr_t uOutdoorTempSensorAddr = 0x78000000c6c2f728;
const onewire_addr_t uInletFlowTempSensorAddr = 0x78000000c6c2f728;
const onewire_addr_t uReturnFlowTempSensorAddr = 0x78000000c6c2f728;
const onewire_addr_t uInletFlowTempSensorAddr = 0x410000108b8c0628;
const onewire_addr_t uReturnFlowTempSensorAddr = 0x90000108cc77c28;
onewire_addr_t uOneWireAddresses[MAX_DN18B20_SENSORS];
float fDS18B20Temps[MAX_DN18B20_SENSORS];
@ -36,7 +36,7 @@ void taskInput(void *pvParameters);
void initMeasurement(sMeasurement *pMeasurement);
void updateAverage(sMeasurement *pMeasurement);
void updatePrediction(sMeasurement *pMeasurement);
float linearRegressionPredict(const float *samples, size_t count, float futureIndex);
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex);
void initInputs(void)
{
@ -162,6 +162,7 @@ void updatePrediction(sMeasurement *pMeasurement)
predict60s->fValue = linearRegressionPredict(
predict60s->samples,
predict60s->bufferCount,
predict60s->bufferIndex,
predict60s->bufferCount + 60.0f);
}
@ -217,7 +218,7 @@ void taskInput(void *pvParameters)
for (int j = 0; j < sSensorCount; j++)
{
float temp_c = fDS18B20Temps[j];
ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c);
// ESP_LOGI(TAG, "Sensor: %08" PRIx64 " reports %lf°C", (uint64_t)uOneWireAddresses[j], temp_c);
switch ((uint64_t)uOneWireAddresses[j])
{
@ -226,17 +227,20 @@ void taskInput(void *pvParameters)
sChamperTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sChamperTemperature);
updatePrediction(&sChamperTemperature);
break;
case ((uint64_t)uOutdoorTempSensorAddr):
sOutdoorTemperature.fCurrentValue = temp_c;
sOutdoorTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sOutdoorTemperature);
updatePrediction(&sOutdoorTemperature);
break;
case ((uint64_t)uInletFlowTempSensorAddr):
sInletFlowTemperature.fCurrentValue = temp_c;
sInletFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sInletFlowTemperature);
updatePrediction(&sInletFlowTemperature);
break;
case ((uint64_t)uReturnFlowTempSensorAddr):
sReturnFlowTemperature.fCurrentValue = temp_c;
sReturnFlowTemperature.state = MEASUREMENT_NO_ERROR;
updateAverage(&sReturnFlowTemperature);
@ -264,7 +268,7 @@ void taskInput(void *pvParameters)
}
}
float linearRegressionPredict(const float *samples, size_t count, float futureIndex)
float linearRegressionPredict(const float *samples, size_t count, size_t bufferIndex, float futureIndex)
{
if (count == 0)
return 0.0f; // No prediction possible with no data
@ -273,8 +277,11 @@ float linearRegressionPredict(const float *samples, size_t count, float futureIn
for (size_t i = 0; i < count; i++)
{
// Calculate the circular buffer index for the current sample
size_t circularIndex = (bufferIndex + i + 1) % count;
float x = (float)i; // Time index
float y = samples[i]; // Sample value
float y = samples[circularIndex]; // Sample value
sumX += x;
sumY += y;
@ -285,7 +292,7 @@ float linearRegressionPredict(const float *samples, size_t count, float futureIn
// Calculate slope (m) and intercept (b) of the line: y = mx + b
float denominator = (count * sumX2 - sumX * sumX);
if (fabs(denominator) < 1e-6) // Avoid division by zero
return samples[count - 1]; // Return last value as prediction
return samples[bufferIndex]; // Return the latest value as prediction
float m = (count * sumXY - sumX * sumY) / denominator;
float b = (sumY - m * sumX) / count;